• Title/Summary/Keyword: 용접입열

Search Result 57, Processing Time 0.023 seconds

Evaluation of Underclad Crack Susceptibility of the SA508 Class 3 Steel for Pressure Vessels -Optimization of Heat Input- (압력용기용 SA508 class3강에 대한 underclad 균열의 감수성 평가 - 입열량의 최적화)

  • 김석원;양성호;김준구;이영호
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.139-149
    • /
    • 1995
  • Many pressure vessels for the power plants are fabricated from low alloy ferritic steels. The inner sides of the pressure vessels are commonly weld_cladded with austenitic stainless steels to minimize problems of corrosive attack. The submerged-arc welding(SAW) process is now used in preference to other processes because of the possibilities open to automation to reduce the overaII welding times. The most reliable way to avoid underclad cracks(UCC) which are often detected at the overlap of the clad beads is to use nonsusceptible steels such as SA508 class 3. At present domestically developed forging steel of SA508 cl.S is now being cladded with single layer by using 90mm wide strip, which transfers higher heat input into the base metal compared to the conventional two layers strip cladding which has been in wide use with 30-60 mm wide strip. But the current indices for the influence of heat input on crack susceptibility are not accurate enough to express the subtle difference in crack susceptibility of the steel. Therefore, the purpose of this present study is: l) To determine UCC susceptibility on domestic forging steel, SA508 cl.S cladded with single layer by using submerged arc 90mm strip and, 2) To optimize heat input range by which the crack susceptibility could be eliminated.

  • PDF

Effect of Welding Heat Input and PWHT Cooling Rate on Mechanical Properties of Welded Region at SAW of 1.25Cr-0.5Mo Steel for Pressure Vessel (압력용기용 1.25Cr-0.5Mo 강의 Submerged Arc Welding시 입열 및 PWHT 냉각속도가 용접부 기계적 성질에 미치는 영향)

  • Lee Dong-Hwan;Park Jong-Jin
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.26-31
    • /
    • 2004
  • In order to propose the optimum welding condition for field application, the effects of welding heat input and cooling rate at PWHT on the mechanical properties were investigated. Submerged arc welding of 1.25Cr-0.5Mo steel for pressure vessel was conducted at welding heat inputs of 15.2kJ/cm, 30.9kJ/cm, and 44.8kJ/cm, and cooling rates of 184$^{\circ}C$/hr, 55$^{\circ}C$/hr, and 2$0^{\circ}C$/hr at PWHT. From the test results, as the welding heat input increase up to 30.9kJ/cm, the changes of microstructure and impact toughness were small. At the heat input of 44.8kJ/cm, however, toughness decreased obviously due to the coarsening of coarse-grained HAZ and formation of ferrite at bainite grainboundary of weld metal. On the other hand, cooling rates at PWHT did not effect on the changes in microstructure and mechanical properties. Even though tensile strength and impact toughness at all welding conditions of this study were above the minimum specification requirement, it was confirmed that heat input of 30.9kJ/cm was the optimum welding condition to improve welding performance by higher heat input.

Lab Weldability of Pure Titanium by Nd:YAG Laser (Nd:YAG 레이저를 이용한 순티타늄판의 겹치기 용접성)

  • Kim, Jong-Do;Kwak, Myung-Sub
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.315-322
    • /
    • 2008
  • Titanium and its alloys have excellent corrosion resistance, high strength to weight ratios and creep properties in high temperature, which make them using many various fields of application. Especially, pure titanium, which has outstanding resistance for the stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion, brings out to the best material for the heat exchanger, ballast tank, desalination facilities, and so on. Responding to these needs, welding processes for titanium are also being used GTAW, GMAW, PAW, EBW, LBW, resistance welding and diffusion bonding, etc. However, titanium is very active and highly susceptible to embrittlement by oxygen, nitrogen, hydrogen and carbon at high temperature, so it needs to shield the weld metal from the air and these gases during welding by non-active gas. In this study, it was possible to get sound beads without humping and spatter with a decrease of peak power according to increase of pulse width, change of welding speed and overlap rate for heat input control, and shield conditions at pulsed laser welding of titanium plates for Lap welding.

Effect of Up-and-Down Torch Oscillation for Providing Uniform Heat Input along the Sidewall of Gap on Ultra Narrow Gap Welding (울트라 내로우 갭 용접에서 갭 내 고른 아크입열 분포를 위한 상ㆍ하 토치요동 효과)

  • 김두영;나석주
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.85-91
    • /
    • 2003
  • Narrow gap welding has many advantages over conventional V-grooved butt welding such as high productivity, small deformation and improved mechanical property of joints. With narrower groove gap, less arc heat input is expected will all the other advantages of narrow gap welding. The main defects of narrow gap welding include the lack of root fusion, convex bead surface and irregular surface, all of which have negative effects on the next welding pass. This paper suggests an up-and-down torch oscillation for ultra narrow gap welding with gap size of 5mm and investigates the proper welding conditions to fulfill the reliable and high welding quality. First, GMA welding model was suggested for ultra narrow gap welding system with Halmoy's model referenced for wire melting modeling. And the arc length in ultra narrow gap was defined. Secondly, based on the experimental results of up-and-down torch oscillation welding, phase shift of current and wire extension length were simulated for varying oscillation frequency to show that weld the bead shape in ultra narrow gap welding can be predicted. As the result, it was confirmed that reliable weld quality in ultra narrow gap welding can be achieved with up-and-down torch oscillation above 15Hz due to its ability to provide uniform heat input along the sidewall of gap.

Laser Welding Analysis for 3D Printed Thermoplastic and Poly-acetate Polymers (3차원 광경화성 수지와 폴리아세테이트 수지의 레이저 접합해석)

  • Choi, Hae Woon;Yoon, Sung Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.701-706
    • /
    • 2015
  • In this study, experimental and computer simulation results are compared and analyzed. Three-dimensional (3D) fabricated matrices from an MJM 3D printer were joined with poly-acetate thermoplastic polymers using a diode laser. A power range of 5-7 W was used to irradiate the boundary of two polymers. The heated polymers flowed into the matrices of the 3D fabricated structure, and reliable mechanical joining was achieved. Computer simulation showed the temperature distribution in the polymers, and flow direction was estimated based on the flux and temperature information. It was found that the more than the minimum energy threshold was required to effectively join the polymers and that two scans at low-speed were more effective than four scans at high speed.

Experimental Study for Structural Behavior of Embed Plate into Concrete Subjected to Welding Heat Input (매입강판 용접열에 의한 고강도 콘크리트 접합부 구조성능 영향평가에 관한 실험적 연구)

  • Chung, Kyung Soo;Kim, Ki Myon;Kim, Do Hwan;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.569-578
    • /
    • 2013
  • In a super-tall building construction, thick and large-sized embed plates are usually used to connect mega structural steel members to RC core wall or columns by welding a gusset plate on the face of the embed plate with T-shape. A large amount of heat input accumulated by weld passes causes the plates to expand or deform. In addition, the temperature of concrete around the plates also could be increased. Consequently, cracks and spalls occur on the concrete surface. In this study, the effect of weld heat on embed plates and 80MPa high strength concrete is investigated by considering weld position (2G and 3G position), edge distance, concrete curing time, etc. Measured temperature of the embed plates was compared with the transient thermal analysis results. Finally, push-out tests were performed to verify and compare the shear studs capacity of the embed plate with design requirement. Test result shows that the shear capacity of the plate is reduced by 14%-19% due to the weld heat effect and increased as the concrete curing time is longer.

A study on the characteristic of the Groove corrosion of ERW carbon steel according to water speed (유속에 따른 ERW 탄소강관의 홈부식 특성에 관한 연구)

  • Kim, Jae-Seong;Lee, Young-Ki;Kim, Yong;Lee, Bo-Young
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.82-82
    • /
    • 2009
  • Although leakage at a low carbon steel pipe made by electrical resistance welding(ERW) was reported due to grooving corrosion, the cause for the corrosion has not yet been cleared. So lots of researches were carried out already about grooving corrosion mechanism of ERW carbon steel pipe but there is seldom study for water hammer happened by fluid phenomenon and corrosion rate by flow velocity. In this study, the corrosion test carried out using the ERW carbon steel pipe by changed the water speed and heat input in a month. The level of dissolved oxygen is maintained 5~5.5mg/l(amount of dissolved oxygen in tap water). The water speed for corrosion test is 1m/s, 2m/s, 3m/s. As the results, grooving corrosion rate is increased cause by water speed in the pipe. In the case of the ERW pipe with more heat input, grooving corrosion rate is decreased. It is therefore that welding heat input should be controlled based on the carbon content of the pipe in order to improve the corrosion reistance of the ERW pipe.

  • PDF