• Title/Summary/Keyword: 용적차원

Search Result 59, Processing Time 0.033 seconds

Evaluation on Usefulness of Abdomen and Chest Motion Control Device (ABCHES) for the Tumor with a Large Respiratory Motion in Radiotherapy (호흡으로 인한 움직임이 큰 종양의 방사선치료 시 Abdomen and Chest Motion Control Device (ABCHES)의 유용성 평가)

  • Cho, Yoon-Jin;Jeon, Mi-Jin;Shin, Dong-Bong;Kim, Jong-Dae;Kim, Sei-Joon;Ha, Jin-Sook;Im, Jung-Ho;Lee, Ik-Jae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.85-93
    • /
    • 2012
  • Purpose: It is essential to minimize the respiratory-induced motion of involved organs in the Tomotherapy for tumor located in the chest and abdominal region. However, the application of breathing control system to Tomotherapy is limited. This study was aimed to investigate the possible application of the ABCHES system and its efficacy as a means of breathing control in the tomotherapy treatment. Materials and Methods: Five subjects who were treated with a Hi-Art Tomotherapy system for lung, liver, gallbladder and pancreatic tumors. All patients undertook trained on two breathing methodes using an ABCHES, free breathing methode and shallow breathing methode. When the patients could carry out the breathing control, 4D-CT scan was a total of 10 4D tomographic images were acquired. A radiologist resident manually drew the tumor region, including surrounding nomal organs, on each of CT images at the inhalation phase, the exhalation phase and the 40% phase (mid-inhalation) and average CT image. Those CT images were then exported to the Tomotherapy planning station. Data exported from the Tomotherapy planning station was analyzed to quantify characteristics of dose-volume histograms and motion of tumors. Organ motions under free breathing and shallow breathing were examined six directions, respectively. Radiation exposure to the surrounding organs were also measured and compared. Results: Organ motion is in the six directions with more than a 5 mm displacement. A total of 12 Organ motions occurred during free breathing while organ motions decreased to 2 times during shallow breathing under the use of Abches. Based on the quantitative analysis of the dose-volume histograms shallow breathing showed lower resulting values, compared to free breathing, in every measure. That is, treatment volume, the dose of radiation to the tumor and two surrounding normal organs (mean doses), the volume of healthy tissue exposed to radiation were lower at the shallow breathing state. Conclusion: This study proposes that the use of ABCHES is effective for the Tomotherapy treatment as it makes shortness of breathing easy for patients. Respiratory-induced tumor motion is minimized, and radiation exposure to surrounding normal tissues is also reduced as a result.

  • PDF

A Dosimetric Evaluation of Large Pendulous Breast Irradiation in Prone Position (Large Pendulous Breast 환자의 방사선 치료에 있어서 엎드린 자세의 유용성 평가)

  • Hong, Chae-Seon;Ju, Sang-Gyu;Park, Ju-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 2008
  • Purpose: To evaluate dosimetry results of three different techniques for whole breast irradiation after conservative surgery of large pendulous breast patient. Materials and Methods: Planning computed tomography (CT) scans for three techniques were performed on a GE Hi-speed advantage CT scanner in the supine (SP), supine with breast supporting Device (SD) and prone position on a custom prone mattress (PP). Computed tomography images were acquired at 5 mm thickness. The clinical target volumes (CTV), ipsilateral lung and heart were delineated to evaluate the dose statistic, and all techniques were planned with the tangential photon beams (Pinnacle$^3$, Philips Medical System, USA). The prescribed dose was 50 Gy delivered in 25 fractions. To evaluate the dose coverage for CTV, we analysed percent volume of CTV receiving minimum of 95%, 100%, 105%, and 110% of prescription dose ($V_{95}$, $V_{100}$, $V_{105}$, and $V_{110}$) and minimal dose covering 95% ($D_{95}$) of CTV. The dosimetric comparison for heart and ipsilateral lung was analysed using the minimal dose covering 5% of each organs ($D_5$) and the volume that received >18 Gy for the heart and >20 Gy for the ipsilateral lung. Results: Target volume coverage ($V_{95}$ and $V_{100}$) was not significantly different for all technique. The V105 was lower for PP (1.2% vs. 4.4% for SP, 11.1% for SD). Minimal dose covering 95% ($D_{95}$) of target was 47.5 Gy, 47.7 Gy and 48 Gy for SP, SD and PP. The volume of ipsilateral lung received >20 Gy was 21.7%, 11.6% and 4.9% for SP, SD and PP. The volume of heart received >18 Gy was 17.0%, 16.1% and 9.8% for SP, SD and PP. Conclusion: Prone positioning of patient for large pendulous breast irradiation enables improving dose uniformity with minimal heart and lung doses.

  • PDF

The Optimization of Reconstruction Method Reducing Partial Volume Effect in PET/CT 3D Image Acquisition (PET/CT 3차원 영상 획득에서 부분용적효과 감소를 위한 재구성법의 최적화)

  • Hong, Gun-Chul;Park, Sun-Myung;Kwak, In-Suk;Lee, Hyuk;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • Purpose: Partial volume effect (PVE) is the phenomenon to lower the accuracy of image due to low estimate, which is to occur from PET/CT 3D image acquisition. The more resolution is declined and the lesion is small, the more it causes a big error. So that it can influence the test result. Studied the optimum image reconstruction method by using variation of parameter, which can influence the PVE. Materials and Methods: It acquires the image in each size spheres which is injected $^{18}F$-FDG to hot site and background in the ratio 4:1 for 10 minutes by using NEMA 2001 IEC phantom in GE Discovey STE 16. The iterative reconstruction is used and gives variety to iteration 2-50 times, subset number 1-56. The analysis's fixed region of interest in detail part of image and compute % difference and signal to noise ratio (SNR) using $SUV_{max}$. Results: It's measured that $SUV_{max}$ of 10 mm spheres, which is changed subset number to 2, 5, 8, 20, 56 in fixed iteration to times, SNR is indicated 0.19, 0.30, 0.40, 0.48, 0.45. As well as each sphere's of total SNR is measured 2.73, 3.38, 3.64, 3.63, 3.38. Conclusion: In iteration 6th to 20th, it indicates similar value in % difference and SNR ($3.47{\pm}0.09$). Over 20th, it increases the phenomenon, which is placed low value on $SUV_{max}$ through the influence of noise. In addition, the identical iteration, it indicates that SNR is high value in 8th to 20th in variation of subset number. Therefore, to reduce partial volume effect of small lesion, it can be declined the partial volume effect in iteration 6 times, subset number 8~20 times, considering reconstruction time.

  • PDF

Consideration on Measured Patients Dose of Three-Dimensional and Four-Dimensional Computer Tomography when CT-Simulation to Radiation Therapy (방사선치료를 위한 CT 검사 시 3DCT와 4DCT에 대한 피폭선량 고찰)

  • Park, Ryeong-Hwang;Kim, Min-Jung;Lee, Sang-Kyu;Park, Kwang-Woo;Jeon, Byeong-Cheol;Cho, Jeong-Hee;Yoo, Beong-Gyu;Lee, Jong-Seok
    • Journal of radiological science and technology
    • /
    • v.34 no.4
    • /
    • pp.341-349
    • /
    • 2011
  • This study was to measure the patient dose difference between 3D treatment planning CT and 4D respiratory gating CT. Study was performed with each 10 patients who have lung and liver cancer for measured patient exposure dose by using SOMATON SENSATION OPEN(SIMENS, GERMANY). CTDIvol and DLP value was used to analyze patient dose, and actual dose was measured in the location of liver and kidney for abdominal examination and lung, heart and spinal cord for chest examination. Rando phantom were used for the experiment. OSLD was used for in-vitro and in-vivo dosimetry. Increasing overall actual dose in 4D respiratory gated CT-simulation using OSLD increase the dose by 5.5 times for liver cancer patients and 6 times for lung cancer patients. In CT simulation of 10 lung cancer patients, CTDIvol value was increased by 5.7 times and DLP 2.4 times. For liver cancer patients, CTDIvol was risen by 3.8 times and DLP 1.6 times. The accuracy of treatment volume could be increased in 4D CT planning for position change due to the breaths of patient in the radiation therapy. However, patients dose was increased in 4D CT than 3D CT. In conclusion, constant efforts is required to reduce patients dose by reducing scan time and scan range.

Analysis of improvement directions on the Current Appraisal System of Public Records in Electronic Record Environments: Focusing on Appraisal Methods and Appraisal System (전자기록 환경 하의 현행 평가제도 개선방향 분석 - 평가방식 및 평가체제를 중심으로 -)

  • Kim, Myoung-Hun
    • The Korean Journal of Archival Studies
    • /
    • no.19
    • /
    • pp.103-151
    • /
    • 2009
  • Appraisal in electronic record environments is performed focusing on not content but function in which the records are created. Functional appraisal is practically supported in that electronic records composed of 0 and 1 of the bit-stream is unable to be evaluated individually. But the most important reason functional appraisal is performed in electronic record environments is that functional appraisal can select electronic records which assure business context and recordness, and need to run organization and perform business. In Korea, functional appraisal has adopted in course of renovation of national record and archive management system, but methods and logics of functional appraisal have numerous problems. To do so, this article discusses current appraisal system and methods of korea which has renovated confronting with electronic record environments, and then proposes the improvement directions on appraisal system and methods of Korea in electronic record environments from the perspective of long-term views. In this respect, this article proposes the improvement directions on current appraisal system and methods of Korea as follows. First, business functional analysis of each agency in functional appraisal should greatly strengthen. Second, it is necessary to devise proper methods for selecting primary values at current stage of electronic records, and to reinforce appraisal of records as knowledges and informations. Finally, functional appraisal, which inevitably carries out for appraising electronic records, has defects in aspect of selecting archives important in a national point of views. Therefore this article suggests the necessity of archival appraisal strategies that complement functional appraisal. This appraisal system is able to establish a base of the regime of archival appraisal which will harmonize primary value at current stage with secondary value at non-current stage in a national point of views.

Analysis of Land Use Characteristics Using GIS DB - A Case Study of Busan Metropolitan City in Korea - (GIS DB를 이용한 토지이용 특성 분석 - 부산광역시 건물 높이 시뮬레이션을 중심으로 -)

  • Min-Kyoung CHUN;Tae-Kyung BAEK
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.3
    • /
    • pp.52-64
    • /
    • 2023
  • As cities continue to develop rapidly, overcrowding, pollution, and urban sanitation problems arise, and the need to separate conflicting uses is emerging. From this perspective, there is no disagreement that urban land use should be planned. Therefore, all activities in land space must be predicted in advance and planned so that land use can be rationally established. This study used the constructed data to compare and analyze the use distribution characteristics of residential, commercial, and industrial areas in Busan Metropolitan City to identify the building area status, total floor area, and floor area ratio by use zone in districts and counties in Busan Metropolitan City. As a result, it was found that the residential area accounted for the largest proportion of the area by use zone at 51%, and that the residential area accounted for the largest proportion at 63% of the total floor area by use zone. And the analysis was conducted using a specialization coefficient that can identify regional characteristics based on land use composition ratio. Because it is difficult to determine the trend of the entire region just by counting the absolute value of the area, the area composition ratio was calculated and compared. Looking at the residential facilities among the specialization coefficients by use area, it is above 1.0 except for Gijang-gun, Sasang-gu, Saha-gu, and Jung-gu. Commercial facilities are over 1.0 except for Gijang-gun, Gangseo-gu, Nam-gu, Sasang-gu, and Saha-gu. Looking at industrial facilities, you can see that the industrial complex distribution area is Gangseo-gu (2.5), Gijang-gun (1.22), Sasang-gu (2.06), and Saha-gu (1.64). In addition, it was found that business facilities and educational welfare facilities were evenly distributed. Land use analysis was conducted through simulation of the current status of building heights according to each elevation in each use area and the height of buildings in each use area. In general, areas over 80m account for more than 43% of Busan City, showing that the distribution of use areas is designated in areas with high altitude due to the influence of topographical conditions.

Evaluation of the Usefulness of Restricted Respiratory Period at the Time of Radiotherapy for Non-Small Cell Lung Cancer Patient (비소세포성 폐암 환자의 방사선 치료 시 제한 호흡 주기의 유용성 평가)

  • Park, So-Yeon;Ahn, Jong-Ho;Suh, Jung-Min;Kim, Yung-Il;Kim, Jin-Man;Choi, Byung-Ki;Pyo, Hong-Ryul;Song, Ki-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.123-135
    • /
    • 2012
  • Purpose: It is essential to minimize the movement of tumor due to respiratory movement at the time of respiration controlled radiotherapy of non-small cell lung cancer patient. Accordingly, this Study aims to evaluate the usefulness of restricted respiratory period by comparing and analyzing the treatment plans that apply free and restricted respiration period respectively. Materials and Methods: After having conducted training on 9 non-small cell lung cancer patients (tumor n=10) from April to December 2011 by using 'signal monitored-breathing (guided- breathing)' method for the 'free respiratory period' measured on the basis of the regular respiratory period of the patents and 'restricted respiratory period' that was intentionally reduced, total of 10 CT images for each of the respiration phases were acquired by carrying out 4D CT for treatment planning purpose by using RPM and 4-dimensional computed tomography simulator. Visual gross tumor volume (GTV) and internal target volume (ITV) that each of the observer 1 and observer 2 has set were measured and compared on the CT image of each respiratory interval. Moreover, the amplitude of movement of tumor was measured by measuring the center of mass (COM) at the phase of 0% which is the end-inspiration (EI) and at the phase of 50% which is the end-exhalation (EE). In addition, both observers established treatment plan that applied the 2 respiratory periods, and mean dose to normal lung (MDTNL) was compared and analyzed through dose-volume histogram (DVH). Moreover, normal tissue complication probability (NTCP) of the normal lung volume was compared by using dose-volume histogram analysis program (DVH analyzer v.1) and statistical analysis was performed in order to carry out quantitative evaluation of the measured data. Results: As the result of the analysis of the treatment plan that applied the 'restricted respiratory period' of the observer 1 and observer 2, there was reduction rate of 38.75% in the 3-dimensional direction movement of the tumor in comparison to the 'free respiratory period' in the case of the observer 1, while there reduction rate was 41.10% in the case of the observer 2. The results of measurement and comparison of the volumes, GTV and ITV, there was reduction rate of $14.96{\pm}9.44%$ for observer 1 and $19.86{\pm}10.62%$ for observer 2 in the case of GTV, while there was reduction rate of $8.91{\pm}5.91%$ for observer 1 and $15.52{\pm}9.01%$ for observer 2 in the case of ITV. The results of analysis and comparison of MDTNL and NTCP illustrated the reduction rate of MDTNL $3.98{\pm}5.62%$ for observer 1 and $7.62{\pm}10.29%$ for observer 2 in the case of MDTNL, while there was reduction rate of $21.70{\pm}28.27%$ for observer 1 and $37.83{\pm}49.93%$ for observer 2 in the case of NTCP. In addition, the results of analysis of correlation between the resultant values of the 2 observers, while there was significant difference between the observers for the 'free respiratory period', there was no significantly different reduction rates between the observers for 'restricted respiratory period. Conclusion: It was possible to verify the usefulness and appropriateness of 'restricted respiratory period' at the time of respiration controlled radiotherapy on non-small cell lung cancer patient as the treatment plan that applied 'restricted respiratory period' illustrated relative reduction in the evaluation factors in comparison to the 'free respiratory period.

  • PDF

A Study on Developing Customized Bolus using 3D Printers (3D 프린터를 이용한 Customized Bolus 제작에 관한 연구)

  • Jung, Sang Min;Yang, Jin Ho;Lee, Seung Hyun;Kim, Jin Uk;Yeom, Du Seok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.61-71
    • /
    • 2015
  • Purpose : 3D Printers are used to create three-dimensional models based on blueprints. Based on this characteristic, it is feasible to develop a bolus that can minimize the air gap between skin and bolus in radiotherapy. This study aims to compare and analyze air gap and target dose at the branded 1 cm bolus with the developed customized bolus using 3D printers. Materials and Methods : RANDO phantom with a protruded tumor was used to procure images using CT simulator. CT DICOM file was transferred into the STL file, equivalent to 3D printers. Using this, customized bolus molding box (maintaining the 1 cm width) was created by processing 3D printers, and paraffin was melted to develop the customized bolus. The air gap of customized bolus and the branded 1 cm bolus was checked, and the differences in air gap was used to compare $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$ and $V_{95%}$ in treatment plan through Eclipse. Results : Customized bolus production period took about 3 days. The total volume of air gap was average $3.9cm^3$ at the customized bolus. And it was average $29.6cm^3$ at the branded 1 cm bolus. The customized bolus developed by the 3D printer was more useful in minimizing the air gap than the branded 1 cm bolus. In the 6 MV photon, at the customized bolus, $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$, $V_{95%}$ of GTV were 102.8%, 88.1%, 99.1%, 95.0%, 94.4% and the $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$, $V_{95%}$ of branded 1cm bolus were 101.4%, 92.0%, 98.2%, 95.2%, 95.7%, respectively. In the proton, at the customized bolus, $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$, $V_{95%}$ of GTV were 104.1%, 84.0%, 101.2%, 95.1%, 99.8% and the $D_{max}$, $D_{min}$, $D_{mean}$, $D_{95%}$, $V_{95%}$ of branded 1cm bolus were 104.8%, 87.9%, 101.5%, 94.9%, 99.9%, respectively. Thus, in treatment plan, there was no significant difference between the customized bolus and 1 cm bolus. However, the normal tissue nearby the GTV showed relatively lower radiation dose. Conclusion : The customized bolus developed by 3D printers was effective in minimizing the air gap, especially when it is used against the treatment area with irregular surface. However, the air gap between branded bolus and skin was not enough to cause a change in target dose. On the other hand, in the chest wall could confirm that dose decrease for small the air gap. Customized bolus production period took about 3 days and the development cost was quite expensive. Therefore, the commercialization of customized bolus developed by 3D printers requires low-cost 3D printer materials, adequate for the use of bolus.

  • PDF

Packing effects on the intracavitary radiation Therapy 3-Dimension plan of the uterine cervix cancer (자궁경부암 강내조사 3차원 치료계획 시 Packing의 유용성 분석)

  • Si, Chang-Keun;Jo, Jung-Kun;Lee, Du-Hyun;Kim, Sun-Yeung;Kim, Tae-Yoon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Purpose : An effect of a packing to uterine treatment of a cervical cancer using a dose-volume histogram for a point dose and a volume dose of the bladder and the rectum was analyzed by establishing a three-dimensional treatment plan using a CT image. Materials and methods : Reference points of the bladder and the rectum were marked, respectively at a treatment plan device (plato brachytherapy V14.2.4) by photographing CT(marconi, USA) when the packing was used and removed under the same condition and a treatment plan was performed to Apoint depending on ICRU38. However, in case of the rectum, a maximum point was looked up and compared with the above point because the point presented from the ICRU is not proper as a representative value of a rectum point dose. Further, the volume dose depending on volume of $50\%,\;80\%,\;and\;100\%$ point doses of the rectum and the bladder was measured. The measured values were used to analyze the effect of the packing through a Wilcoxon Signed Rank Test (a SAS statistical analysis process program). Result : The reference points at the bladder and rectum doses when the packing was removed were $116.94\;35.42\%$ and $117.59\;21.08\%$, respectively. The points when the packing was used were $107.08\;38.12\%$ and $95.19\;21.32\%$, respectively. After the packing was used, the reference points at the bladder and the rectum were decreased by $9.86\%$ and $22.4\%$, respectively. When the packing was removed, the maximum points at the bladder and the rectum were $164.51\;50.89\%,\;128.81\;33.05\%$, respectively. When the packing was used, the maximum points at the bladder and the rectum were $142.31\;44.79,\;110.08\;37.03\%$, respectively. After the packing was used, the maximum points at the bladder and the rectum were decreased by $22.2\%$ and $18.73\%$, respectively. When the packing was removed, the bladder volume at $50\%,\;80\%,\;and\;100\%$ point doses of the rectum and the bladder were $48.62{\pm}18.09\%,\;16.12{\pm}11.15\%,\;and\;7.51{\pm}6.63\%$, respectively and its rectum volume were $23.41{\pm}14.44\%,\;6.27{\pm}4.28\%,\;2.79{\pm}2.27\%$, respectively. When the packing was used, the bladder volume at $50\%,\;80\%,\;and\;100\%$ point doses of the rectum and the bladder were $40.33{\pm}16.72,\;11.63{\pm}8.72,\;and\;4.87{\pm}4.75\%$, respectively and its rectum volume were $18.96{\pm}8.37\%,\;4.75{\pm}2.58\%,\;and\;1.58{\pm}1.06\%$, respectively. After the packing was used, the bladder volume at $50\%,\;80\%,\;and\;100\%$ point doses of the rectum and the bladder were decreased by $8.29\%,\;4.49\%,\;and\;2.64\%$, respectively and its bladder volume were decreased by $4.45\%,\;1.52\%,\;and\;1.21\%$, respectively. Conclusion : Values at Reference point doses of the bladder and the rectum recommended from the ICRU 38 were 0.0781 and 0.0781, respectively and values of their maximum point doses were 0.0156 and 0.0156, respectively, as a result of which an effect of the packing using at the uterine intracavitary treatment of an uterine cervical cancer through the three-dimensional treatment plan used CT were measured. That is, the values at reference point doses and the values at maximum point doses show similar difference. However, P value was 0.15 at over $50\%,\;80\%,\;and\;100\%$ volume doses and the value shows no similar difference. In other words, the effect of the packing looks like having a difference at the point dose, but actually shows no difference at the volume dose. The reason is that the volume of the bladder and the rectum are wide but the volume of the packing is only a portion. Therefore, the effect of decreasing the point dose was not great. Further, the farer the distance is, the more weak the intensity of radiation is because the intensity of radiation is proportional to inverse square of a distance. Therefore, the effort to minimize an obstacle of the bladder and the rectum by using the packing should be made.

  • PDF