• Title/Summary/Keyword: 용융혼련

Search Result 12, Processing Time 0.017 seconds

Highly Concentrated Polymer Bonded Explosive Simulant: Rheology of Exact/Dechlorane Suspension (고농축 복합화약 시뮬란트: Exact/Dechlorane 현탁계의 유변물성)

  • Lee, Sangmook;Hong, In-Kwon;Lee, Jae Wook;Lee, Keun Deuk
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.286-292
    • /
    • 2014
  • The rheology of highly concentrated polymer bonded explosive (PBX) simulant was studied. An energy material, polyethylene plastomer (Exact$^{TM}$) having similar properties to poly(BAMO-AMMO) was selected as a binder. Dechlorane with similar properties to RDX (Research Department eXplosive) was chosen as a filler. Mixing behavior in a batch melt mixer was investigated. During mixing a large amount of heat of viscous dissipation was generated and a continuous decrease in torque was observed when the filler content was above 70 v%. It was believed due to wall slip phenomena. From the SEM images, the fillers were well dispersed and the effect of mixing condition affected slightly on the dispersion. Owing to distinct shear thinning behavior of the suspensions, measuring viscosity of highly filled suspensions was possible in a high shear rate capillary rheometer though it was impossible even in a low shear rate plateplate rheometer.

Electrical and Rheological Behaviors of VGCF/Polyphenylene Sulfide Composites (기상성장 탄소섬유/폴리페닐렌설파이드 복합체 제조 및 전기적$\cdot$유변학적 거동)

  • Noh, Han-Na;Yoon, Ho-Gyu;Kim, Jun-Kyung;Lee, Hyun-Jung;Park, Min
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.85-89
    • /
    • 2006
  • The effect of vapor grown carbon fiber (VGCF) contents on electrical and rheological properties of VGCF filled polyphenylene sulfide (PPS) composites prepared through melt mixing using a twin screw exruder was studied. This method was proved to be quite effective to produce good dispersion of VGCF in the matrix even for highly filled PPS. From the dependence of the electrical conductivity on VGCF content, the percolation phenomena began to occur above $10\;wt\%$. While there is only a marginal increase of viscosity for 1 and $5\;wt\%$ VGCF filled PPS, the composites containing $10\;wt\%$. While VGCF showed abrupt increase in viscosity as well as flattening of frequency vs modulus curve, indicating a transition from a liquid-like to a solid-like behavior due to the creation of VGCF network. This result agrees well to the fact that the network formation in the composite can be composite by rheological property dependence on filler content as well as by electrical conductivity measurement.