용어추출은 도메인 텍스트 모음으로부터 도메인 용어 목록을 인식하는 작업이다. 용어추출의 기존 효과적인 방법들은 비교사 방식으로 동작하며, 후보 용어 집합을 추출하는 작업과 후보 용어에 용어중요도를 할당하는 작업을 주요 단계로 포함한다. 후보 용어의 용어중요도 계산과 관련하여 본 논문에서는 후보 용어의 내부 및 외부용어집합을 활용한다. 내부용어집합은 후보 용어에 포함된 다른 짧은 용어들의 집합이며, 외부용어집합은 후보 용어가 포함된 다른 긴 용어들의 집합이다. 본 논문에서는 후보 용어의 내부 혹은 외부용어집합으로부터 후보 용어의 용어 강도를 계산하는 다양한 강도 함수들을 제시하고, 이들 용어 강도 값들과 C-value 점수를 결합하는 용어중요도 계산 방법을 소개한다. 생물학 및 전산언어학 분야 영어 데이터셋을 사용한 성능 평가에서는 제안된 방법의 용어추출 성능을 비교하고 분석한다. 제안된 방법은 생물학 및 전산언어학 분야 데이터셋에 대해 각각 최대 1%와 3% 차이의 성능 향상을 보였다.
핵심구 추출은 문서의 내용을 대표하는 주제 용어를 자동 추출하는 작업이다. 비지도 방식 핵심구 추출에서는 문서 텍스트로부터 핵심구 후보 용어가 되는 단어나 구를 추출하고 후보 용어에 부여된 중요도에 기반하여 최종 핵심구들이 선택된다. 본 논문에서는 비지도 방식 핵심구 후보 용어 중요도 계산에서 단어 유형 후보 용어와 구 유형 후보 용어의 중요도를 조정하는 방법을 제안한다. 이를 위해 핵심구 추출 대상 문서 텍스트로부터 후보 용어 집합의 타입-토큰 비율과 고빈도 대표 용어의 정보량을 단어 유형과 구 유형으로 구분하여 수집한 후 중요도 조정에 활용한다. 실험에서는 영어로 작성된 full-text 논문을 대상으로 구축된 4개 서로 다른 핵심구 추출 평가집합들을 사용하여 성능 평가를 수행하였고, 제안된 중요도 조정 방법은 3개 평가집합들에서 베이스 라인 및 비교 방법들보다 높은 성능을 보였다.
본 논문에서는 음란사이트를 효과적으로 탐지하기 위하여 퍼지 추론을 이용한 방법을 제안한다. 사용자로부터 몇 개의 음란 사이트 URL을 질의로 입력받아, 해당 URL로부터 수집된 웹 문서들에서 웹 태그와 불용어를 제외한 모든 용어들을 추출한 후, 용어의 DF, TF, HI(Heuristic Information) 정보들을 퍼지 추론에 적용하여 사용자가 제시한 음란 사이트에서 용어의 중요도를 산정한다. 또한, 웹 로봇은 인터넷에서 웹 문서를 수집하고, 퍼지 추론에 의해 산정된 용어의 중요도를 이용하여 수집된 웹 문서가 음란 문서일 가능성을 판별한다.
본 논문에서는 문서의 자동 분류를 위한 용어 빈도 가중치 계산 방법으로 Box-Cox변환기법을 응용한 정규화 용어빈도 가중치를 정의하고, 이를 문서 분류에 적응하였다. 여기서 Box-Cox 변환기법이란 자료를 정규분포화 할 때 적용하는 통계적인 변환방법으로서, 본 논문에서는 이를 응용하여 새로운 용어빈도가중치 계산법을 제안한다. 문서에서 등장한 용어 빈도는 너무 많거나 적게 등장할 경우, 중요도가 떨어지게 되는데, 이는 용어의 중요도가 빈도에 따른 정규분포로 모델링 될 수 있다는 것을 의미한다. 또한 정규화 가중치 계산방법은 기존의 용어빈도 가중치 공식과 비교할 때, 용어마다 계산방법이 달라져, 로그나 루트와 같은 고정된 가중치 방법보다는 좀더 일반적인 방법이라 할 수 있다. 신문기사 8000건을 대상으로 4개의 그룹으로 나누어 실험 한 결과, 정규화 용어빈도가중치 계산방법이 모두 우위의 분류 정확도롤 가져, 본 논문에서 제안한 방법이 타당함을 알 수 있다.
최근 텍스트와 같은 비정형 데이터의 생성 속도가 급격하게 증가함에 따라, 이를 분석하기 위한 기술들의 필요성이 커지고 있다. 텍스트 마이닝은 자연어 처리기술을 사용하여 비정형 텍스트를 정형화하고, 문서에서 가치있는 정보를 획득할 수 있는 기법 중 하나이다. 텍스트 마이닝 기법은 일반적으로 각각의 분서별로 특정 용어의 사용 빈도를 나타내는 문서-용어 빈도행렬을 사용하여 용어의 중요도를 나타내고, 다양한 연구 분야에서 이를 활용하고 있다. 하지만, 문서-용어 빈도 행렬에서 나타내는 용어들의 빈도들은 문서들의 차별성과 그에 따른 용어들의 중요도를 나타내기 어렵기때문에, 용어 가중치를 적용하여 문서가 가지고 있는 특징을 분류하는 방법이 필수적이다. 다양한 용어 가중치를 적용하는 방법들이 개발되어 적용되고 있지만, 환경 분야에서는 용어 가중치 기법 적용에 따른 효율성 평가 연구가 미비한 상황이다. 또한, 환경 이슈 분석의 경우 단순히 문서들에 특징을 파악하고 주어진 문서들을 분류하기보다, 시간적 분포도에 따른 각 문서의 특징을 반영하는 것도 상대적으로 중요하다. 따라서, 본 연구에서는 텍스트 마이닝을 이용하여 2015-2020년의 서울지역 환경뉴스 데이터를 사용하여 환경 이슈 분석에 적합한 용어 가중치 기법들을 비교분석하였다. 용어 가중치 기법으로는 TF-IDF (Term frequency-inverse document frquency), BM25, TF-IGM (TF-inverse gravity moment), TF-IDF-ICSDF (TF-IDF-inverse classs space density frequency)를 적용하였다. 본 연구를 통해 환경문서 및 개체 분류에 대한 최적화된 용어 가중치 기법을 제시하고, 서울지역의 환경 이슈와 관련된 핵심어 추출정보를 제공하고자 한다.
보다 효과적인 색인어 추출 및 색인어 가중치 결정을 위하여 문서의 내용뿐 아니라 구조를 이용하여 색인을 추출하는 연구가 이루어지고 있는데, 대부분의 연구들이 XML 태그의 중요도가 아닌, 문맥상의 단락에 대한 중요도를 계산하는게 일반적이다. 이러한 기존 연구들은 대부분이 객관적인 실험을 통해서 중요도를 입증하기보다는 상식적인 관점에서 단순한 수치로 중요도를 결정하고 있다. 본 논문에서는 웹 문서 관리를 위한 표준으로 자리잡아가고 있는 XML 문서의 태그 정보를 이용한 자동색인을 위하여, 논문을 구성하는 주요 태그를 중요도에 따라 분류하고, 낮은 태그에서 추출된 용어 가중치를 계산하고, 그 가중치로 높은 가중치의 태그에서 추출된 용어의 가중치를 갱신해 가면서 최종 가중치를 계산하는 방법을 제안한다. 보다 객관적인 가중치 결정을 위하여 사용자가 중요하게 생각하는 태그를 실험해 보고 그에 따라 중요도를 분류하여 가중치 계산에 반영한다. 그리고 기존 태그 중요도 결정 방법을 적용하여 계산된 색인어 가중치를 이용한 검색성능과 비교함으로써 본 논문에서 제안한 방법을 적용하여 계산된 색인어 가중치의 효과를 검증한다.
문서 범주화를 위해 자질을 선별하는 기법으로는 자질의 출현 빈도에 따라 범주를 대표하는 자질들을 선별하는 것이 일반적이다. 출현 빈도에 의한 자질을 선별하는 통계적인 기법은 문서의 내용을 대표하는 용어들의 중요도를 간과하는 문제가 발생한다. 본 논문에서는 학습 문서 및 실험 문서에서 자질의 중요도에 의해 범주 대표어를 선별하는 문서 범주화 기법을 제안하였으며, 역범주 빈도 및 카이제곱 통계량에 의해 자질을 선별하는 방법과 비교-실험을 하였다. 문서 범주화 모델로는 나이브 베이지언 확률 모델을 이용하였으며, 성능 평가를 위해서 웹 디렉토리에서 수집된 데이터를 이용하여 실험하였다. 본 논문에서 제안한 자질 중요도에 의한 자질 선별 기법은 용어의 출현 빈도 및 카이제곱 통계량에 의해 자질을 선별한 방법보다 더 나은 성능을 보였다.
보다 효과적인 색인어 추출 및 색인어 가중치 결정을 위하여 문서의 내용뿐 아니라 구조를 이용하여 색인을 추출하는 연구가 이루어지고 있는데, 대부분의 연구들이 XML 태그의 중요도가 아닌, 문맥상의 단락에 대한 중요도를 계산하는게 일반적이다. 이러한 기존 연구들은 대부분이 객관적인 실험을 통해서 중요도를 입증하기보다는 상식적인 관점에서 단순한 수치로 중요도를 결정하고 있다. 본 논문에서는 웹 문서 관리를 위한 표준으로 자리잡아가고 있는 XML 문서의 태그 정보를 이용한 자동색인을 위하여, 논문을 구성하는 주요 태그를 중요도에 따라 분류하고, 낮은 태그에서 추출된 용어 가중치를 계산하고, 그 가중치로 높은 가중치의 태그에서 추출된 용어의 가중치를 갱신해 가면서 최종 가중치를 계산하는 방법을 제안한다. 보다 객관적인 가중치 결정을 위하여 사용자가 중요하게 생각하는 태그를 실험해 보고 그에 따라 중요도를 분류하여 가중치 계산에 반영한다. 그리고 기존 태그 중요도 결정 방법을 적용하여 계산된 색인어 가중치를 이용한 검색성능과 비교함으로써 본 논문에서 제안한 방법을 적용하여 계산된 색인어 가중치의 효과를 검증한다.
인터넷에서 분산 정보를 검색하는 대부분의 시스템들은 사용자가 요구하는 검색 용어의 의미를 반영하지 못해 관련된 정보를 정확히 찾지 못하고 있다. 본 논문에서는 정보 검색 성능을 향상시키는 방안으로 검색 용어의 의미를 반영할 수 있는 용어 분포에 기반한 자동화된 질의어 확장을 제안한다. 먼저, 사용자가 부여한 질의어와 전체 문서에서 용어의 중요도를 반영한 가중치(weight)를 계산하고, LSI의 SVD기법을 이용해 모든 문서에서 질의어와 유사하게 출현하는 용어의 분포를 측정하여, 이들 수치와 질의어 용어의 유사성을 측정하였다. 또한 자동적으로 추가할 용어를 줄이기 위한 방안을 연구하였으며 본 논문에서 제안한 방법을 사용해 검색 성능을 평가하였다.
보다 효과적인 키워드 추출 및 키워드 가중치 결정을 위하여 문서의 내용뿐 아니라 구조를 이용하여 색인을 추출하는 연구가 이루어지고 있는데, 대부분의 연구들이 XML 단락별 중요도가 아닌, 문맥상의 단락에 대한 중요도를 계산하는게 일반적이다. 이러한 기존 연구들은 대부분이 객관적인 실험을 통해서 중요도를 입증하기보다는 일반적인 관점에서 단순한 수치로 중요도를 결정하고 있다. 본 논문에서는 웹 문서 관리를 위한 표준으로 자리잡아가고 있는 XML 문서의 자동색인을 위하여, 논문을 구성하는 주요 단락을 세분하고, 단락에서 추출된 용어의 가중치를 갱신해 가면서 최종 색인어 가중치를 계산하는 방법을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.