• Title/Summary/Keyword: 용식공동

Search Result 9, Processing Time 0.019 seconds

A Case Study of Site Investigation and Ground Stability Analysis for Diagnosis of Subsidence Occurrence in Limestone Mine (석회석 광산 지역의 지반침하 원인 규명을 위한 현장조사와 지반 안정성 분석 사례)

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Choi, Sung-Oong;Oh, Seok-Hoon
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.332-340
    • /
    • 2015
  • Ground subsidence occurring in mine area can cause an enormous damage of loss of lives and properties, and a systematic survey should be conducted a series of field investigation and ground stability analysis in subsidence area. This study describes the results from field investigation and ground stability analysis in a limestone mine located in Cheongwon-gun, Chungcheongbuk-do, Korea. Rock mechanical measurements and electrical resistivity surveys are applied to obtain the characteristics of in-situ rock masses and the distribution patterns of subsurface weak zone, and their results are extrapolated in numerical analysis. From the field investigation and stability analysis, it is concluded that the subsidence occurrence in this limestone mine is caused mainly by subsurface limestone cavities.

한국의 지질과 자연동굴

  • 홍시환;유재신
    • Journal of the Speleological Society of Korea
    • /
    • v.16 no.17
    • /
    • pp.23-26
    • /
    • 1988
  • 석회동굴은 Karst지형 지역에서 지하 형성물로 나타나는 공동지역으로, 이 공동화된 공간에 2차적으로 석순, 석주, 종유석등이 침전되어 생긴 동굴이다. 이런 Karst 지형은 석회암지층에서 용식작용으로 생겨나는데, 우리나라에서는 황해도의 서흥, 신막, 수안, 곡산 물질지역과 평안남도의 덕천, 성천, 강동지방, 그리고 강원도의 삼척, 영월, 평창, 정선, 명주지방, 충청북도의 단양, 제천, 괴산지역 그밖에 경상북도의 울진 지역에도 분포한다.(중략)

  • PDF

A Case Study of Ground Subsidence in a Groundwater-saturated Limestone Mine (지하수로 포화된 석회석광산의 지반침하 사례연구)

  • Choi, Woo-Seok;Kim, Eun-Sup;Kang, Byung-Chun;Shin, Dong-Choon;Kim, Soo-Lo;Baek, Seung-Han
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.511-524
    • /
    • 2015
  • Groundwater causing subsidence in limestone mines is uncommon, and thus relatively poorly investigated. This case study investigated the cause and possibility of future subsidence through an evaluation of ground stability at the Samsung limestone mine, Chungcheongbuk-do. The ground near the mine area was evaluated as unstable due to rainfall permeation, and subsidence in the unmined area resulted from groundwater level drawdown. Future subsidence might occur through the diffusion of subsidence resulting from the small thickness of the mined rock roof, fracture rock joints, and poor ground conditions around the mine. In addition, the risk of additional subsidence by limestone sinkage in corrosion cavities, groundwater level drawdown due to artificial pumping, and rainfall permeation in the limestone zone necessitates reinforcements and other preventative measures.

우리 나라 동굴의 지질과 환경 보전

  • 정창희
    • Proceedings of the Speleological Society Conference
    • /
    • 1996.09a
    • /
    • pp.64-64
    • /
    • 1996
  • 석회동굴은 카르스트 지형 지역에서 지하 형성물로 나타나는 공동지역으로, 이 공동화된 공간에 2차적으로 석순, 석주, 종유석 등이 침전되어 생긴 동굴이다. 이런 카르스트 지형은 석회암 지층에서 용식작용으로 생겨나는데, 우리나라에서는 북쪽은 평안남도 동반지역과 함경남도의 남부서경지역, 황해도 서남부, 그리고 강원도 남부지역, 추가령 구조곡의 일부들이 해당한다. 그리고 남쪽은 문경 - 단양 - 제천 - 영월 - 평창 - 정선 - 삼척 - 강릉에 걸친 지역들이다. 따라서 우리나라의 석회암동굴들은 그 대부분이 조선계 대석회암통의 막동 석회암 층에 분포되고 있다.(중략)

  • PDF

Corrosion of Calcareous Rocks and Ground Subsidence in the Muan Area, Jeonnam, Korea (전남 무안지역에 분포하는 석회질암의 용식작용과 지반침하)

  • Ahn, Kun-Sang
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.2 s.48
    • /
    • pp.47-58
    • /
    • 2007
  • This study examines the distribution of basement rocks in Gyochon-ri, Muan-eup, Muan-gun, Jeonnam where ground subsidence occurred in June 2005, and traces corrosion of limestone. Mica schist and rhyolite are distributed in the surface of the study area, but thick limestone layer with large and small caverns are distributed underground. A horizon of limestone with maximum width of 300 m and 4 km of length was found along the detour which is in the north of pound subsidence. Such identification of limestone presence would be very useful to predict potential ground subsidence. Limestone in this area was disturbed by fold and fault due to severe shearing deformation. Small caverns were frequently found in anticline part of folds formed in limestone layer. Schists with different thicknesses were intercalated in the limestone with shearing deformation and consist of sheet silicate minerals (chlorite and mica) and quartz. In sections of weathered specimen, it is shown that biotite of schist part was altered into chlorite and corrosion of calcite around the schist followed. This suggest that ground water permeated between intercalated sheet silicate minerals and corrosion of limestone began. And small caverns were generated where active corrosion occurred. This study suggests that because of many reasons (for instance, reclamation of the Bulmu reservior and excess pumping), cavern water level was lowered and cave sediments were removed, and it caused ground subsidence to occur.

Analysis of Ground Subsidence on Gyochon Residential Region of Muan City (무안 교촌리주거지역 지반침하 안정성 분석)

  • Han, Kong-Chang;Cheon, Dae-Sung;Ryu, Dong-Woo;Park, Sam-Gyu
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.66-74
    • /
    • 2007
  • The analysis of ground subsidence stability was conducted for the residential area located on the limestone corrosion zone. For the investigation of the cavity distribution in limestone region, various geophysical investigations such as electroresistivity tomography, electromagnetic prospecting are carried out. Geotechnical field tests with drilling are also carried out for the evaluation of the ground characteristics. Based upon their results, numerical modeling is performed for the simulation and prediction of the ground subsidence with the conditions of cavity geometry and groundwater level. The main factor to cause the ground subsidence is estimated as the draw down of the groundwater level below soil overburden, which disturbs the mechanical equilibrium of ground and drives washing away the overburden soil through the cavity and solace subsidence. It seemed that it is essential to maintain the groundwater level continuously above the shallow cavity for the prevention of the ground subsidence on the limestone corrosion zone.

Detection of Limesilicate Cavities by 3-D Electrical Resistivity Survey (3차원 전기비저항탐사에 의한 석회규산염암의 공동탐지)

  • Park, Sam-Gyu;Kim, Chang-Ryol;Son, Jeong-Sul;Kim, Jung-Ho;Yi, Myeong-Jong;Cho, Seong-Jun
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.597-605
    • /
    • 2006
  • In this study, we examined the applicability of 3-D electrical resistivity survey to detect underground cavities within ground subsidence area at the field test site, located at Yongweol-ri, Muan-gun in Korea. Underground cavities are widely present within the limesilicate bedrock overlain by the alluvial deposits in the area of the test site where the ground subsidences have occurred in the past. The limesilicate cavities are mostly filled with groundwater and clays in the test site. Thus, cavities have low electrical resistivity compared to the surrounding host bedrock. The results of the study have shown that the zones of low resistivity correspond to the zones of the cavities identified in the boreholes at the test site, and that the 3-D electrical resistivity survey is very effective to detect underground cavities.

Analysis of the subsidence ares with 3D-GIS and clustering (3차원 GIS와 클러스터링 기법을 이용한 지반침하지역에 대한 지반분석)

  • 고와라;최선영;윤왕중;강문경;김진회
    • Spatial Information Research
    • /
    • v.11 no.3
    • /
    • pp.203-212
    • /
    • 2003
  • An integrated 3D GIS-based approach for understanding underground environment is proposed and applied to a land subsidence in densely populated region. Bedrock and geological discontinues were treated as main factors in this study. Because land subsidence in this study area was caused by cavity owing to dissolved limestone in percolating ground water. Ground was classified according to bedrock types using a clustering method and geological information, N value, and RQD value of boreholes were visualized and integrated by 3D-GIS. Therefore it was possible to recognize underground space easily and analyze the ground information effectively.

  • PDF

Anisotrpic radar crosshole tomography and its applications (이방성 레이다 시추공 토모그래피와 그 응용)

  • Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.21-36
    • /
    • 2005
  • Although the main geology of Korea consists of granite and gneiss, it Is not uncommon to encounter anisotropy Phenomena in crosshole radar tomography even when the basement is crystalline rock. To solve the anisotropy Problem, we have developed and continuously upgraded an anisotropic inversion algorithm assuming a heterogeneous elliptic anisotropy to reconstruct three kinds of tomograms: tomograms of maximum and minimum velocities, and of the direction of the symmetry axis. In this paper, we discuss the developed algorithm and introduce some case histories on the application of anisotropic radar tomography in Korea. The first two case histories were conducted for the construction of infrastructure, and their main objective was to locate cavities in limestone. The last two were performed In a granite and gneiss area. The anisotropy in the granite area was caused by fine fissures aligned in the same direction, while that in the gneiss and limestone area by the alignment of the constituent minerals. Through these case histories we showed that the anisotropic characteristic itself gives us additional important information for understanding the internal status of basement rock. In particular, the anisotropy ratio defined by the normalized difference between maximum and minimum velocities as well as the direction of maximum velocity are helpful to interpret the borehole radar tomogram.

  • PDF