• Title/Summary/Keyword: 용매화 수

Search Result 630, Processing Time 0.024 seconds

Synthesis and Crystal Structure of Amorphous Calcium Carbonate by Gas-Liquid Reaction of System CaO-$C_2 H_5 OH$-$CO_2$ (CaO-$C_2 H_5 OH$-$CO_2$계의 기.액반응에 의한 비정질 탄산칼슘의 합성 및 결정구조)

  • Im, Jae-Seok;Im, Goeng
    • The Journal of Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.97-109
    • /
    • 2004
  • The synthesis and crystal structure of amorphous calcium carbonate obtained from gas-liquid reaction of CaO-$C_2 H_5 OH$-$CO_2$ system according to change of added amount of calcium oxide by blowing $CO_2$ gas and reaction time using ethanol and ethylene glycol were investigated by electric conductivity, X-ray diffraction, and scanning electron microscope. The powdery or gelatinous phases were prepared by passing $CO_2$ gas at a flow rate of 1$\ell$/min into the suspensions containing 10~40g of CaO in mixing solutions 900ml of $C_2 H_5 OH$- and 100ml of ethylene glycol. By rapid filtration and drying the both phases at $60^{\circ}C$ under reduced pressure, the phases converted to the spherical vaterite and amorphous phase. The stable phase of amorphous calcium carbonate(ACC) was formed in the region pH 7-9 but the formation regions of amorphous phase were remarkably affected by pH in the mother liquor. It seems that a part of ACC changed into chain calcite as an intermediate products. The initial reactants prior to the formation of precipitated calcium carbonate is ACC. And ACC is unstable in the aqueous solution and crystallizes finally to calcite by the through-solution reaction. Especially ACC was produced or gelatinous phase which precipitated from the reaction of CaO-$C_2 H_5 OH$-$CO_2$ system.

  • PDF

Characteristics of Fermented Wood Chips and Pig Manure (목질칩을 이용한 분뇨 발효 시 목질칩과 돈분뇨의 성분 변화)

  • Kim, Myung-Kil;Choi, Don-Ha;Choi, In-Gyu
    • Journal of Korea Foresty Energy
    • /
    • v.24 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • After manufacturing fermentation system for degrading pig manure using environmentally friendly technique, performance of the system and characteristics of wood chips and pig manure fermented in the system were analyzed. Results from this study shows that proper fermentation temperature($55{\sim}60^{\circ}C$) reached 3days after the system started and degradation rate, which expresses fermentation performance of system, was $180{\iota}$/day. Even as progressing the fermentation of wood chips and pig manure mixture, the amount of extractives drawn out by alkali, and alcohol-benzene and lignin content was not varied. However, ash content in wood was increased. The inorganic compounds in pig manure seem to be transferred into wood chip. On the other hand holocellulose contents in wood were decreased a little. Holocellulose seems to be consumed as the second carbon source in fermentation process. Results through analysis of inorganic- and heavy metal elements contents in wood chips and pig manure fermented in long term process shows that inorganic elements($Ca^{2+},\;Mg^{2+},\;K^+,\;Na^+$ etc.) contents were increased with fermentation time and heavy metal elements(Cd, As, Cu etc.) which cause environmental pollution were not detected. Number of microorganisms including bacteria, actinomycetes, and fungi, the number of C.F.U(Colony Forming Unit) was increased while temperature in fermentation system was abruptly increased.

  • PDF

Preparations of PAN-based Activated Carbon Nanofiber Web Electrode by Electrostatic Spinning and Their Applications to EDLC (정전방사에 의한 PAN계 활성화 탄소 나노섬유 전극 제조와 EDLC 응용)

  • Kim, Chan;Kim, Jong-Sang;Lee, Wan-Jin;Kim, Hyung-Sup;Edie, Dan D.;Yang, Kap-Seung
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.117-124
    • /
    • 2002
  • Poly(acrylonitrile)(PAN) solutions in dimethylformamide(DMF) were electrospun to prepare webs consisting of 400nm ultra-fine fibers. The webs were oxidatively stabilized, activated by steam and resulted to be activated carbon fibers(ACFs). The specific surface area was $800\~1230 m^2/g$, which showed a trend of a decrease of the surface area with an increase in activation temperature, showing opposite behavior to the other ACFs. The activation energy of the stabilized fibers for the steam activation was determined as 29.2 kJ/mol to be relatively low indicating the easier activation than that of other carbonized fibers. The ACF webs were characterized by pore size and specific surface uea which would be related to the specific capacitance of the electrical double layer capacitor (EDLC). The specific capacitances measured were 27 F/g, 25 F/g, 22 F/g at the respective activation temperature of $700^{circ}C,\;750^{\circ}C\;800^{\circ}C$, showing similar trend with the specific surface area i.e., the higher activation temperature was, the lower specific capacitance resulted.

A Study on Improving Electrical Conductivity for Conducting Polymers and their Applications to Transparent Electrodes (전도성 고분자의 전기전도도 향상 연구 및 이를 이용한 투명전극 응용)

  • Im, Soeun;Kim, Soyeon;Kim, Seyul;Kim, Felix Sunjoo;Kim, Jung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.640-647
    • /
    • 2015
  • As the need for next-generation flexible electronics grows, novel materials and technologies that can replace conventional indium tin oxide (ITO) for transparent electrodes have been of great interest. Among them, a conducting polymer, especially poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS) is one of the most promising candidates because it is mechanically flexible, inexpensive, and capable of being processed in solution. Currently, there are a lot of research efforts on enhancing its electrical conductivity to the level of ITO or metal electrodes through chemical and/or physical processing. In this review article, we present various additives and pre-/post-deposition processing methods for improving the electrical conductivity of PEDOT : PSS. Some of representative reports are also introduced, which demonstrated the use of conductivity-enhanced PEDOT : PSS as transparent electrodes in electronics and energy conversion.

Optimization of the Extraction Process and Antioxidant Capacity of Coptis chinensis Franch Extract through Cluster Analysis (클러스터 분석을 이용한 황련 추출물 항산화 활성 최적화 추출공정)

  • Fu, Minmin;Xuan, Song Hua;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.604-612
    • /
    • 2018
  • Coptis chinensis Franch is a valuable traditional oriental medicinal plant used for the treatment of various diseases. The major factors affecting the content of bioactive compounds and the relationship between bioactive compounds and antioxidant capacities of Coptis chinensis Franch were poorly understood. Thus, effects of the solvent, temperature, and extraction time on the extraction yields of bioactive compounds and the antioxidant activity of C. chinensis Franch extracts were investigated in this work. Our cluster analysis indicated that the hydroalcoholic solvent (50% ethanol : 50% water) at $35^{\circ}C$ for 30 min (extract time) was the best extraction condition for a factory use because the highest level of bioactive compounds and antioxidant activities was achieved. Multiple linear regression analysis revealed that total phenolic content (TPC) contributed to the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity, while both total alkaloid content (TAC) and total flavonoid content (TFC) were responsible for ferric reducing antioxidant power (FRAP) activity. These results indicated that extraction conditions controlled the yield of bioactive compounds and the antioxidant activity of C. chinensis Franch, which can provide important information for the industrial extraction.

Studies on Ion-Selective Crown Ether Dyes (이온선택성 크라운 에테르 염료에 관한 연구)

  • Sam-Woo Kang;Chong-Min Park;Won-Fae Koo;Keun-Jae Kim;Soo-Min Lee;Choo-Hwan Chang
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.443-451
    • /
    • 1988
  • New crown ether dye-Ⅰ and dye-Ⅱ having an azo group(-N=N-) were synthesized from monobenzo-15-crown-5 and dibenzo-18-crown-6. These dyes showed ${\lambda}_{max}$ of 377 and 383nm respectively. The complexes of alkali metal ions ($Na^+$, $K^+$, $Cs^+$) with dye ligands showed band shift (390~400nm) and intensity increased. For a given anion, the extraction constants are in the order of $K^+$ < $Cs^+$ < $Na^+$ for dye-Ⅰ and $Cs^+$ < $Na^+$ < $K^+$ for dye-Ⅱ. These results show that the selectivity of crown ethers toward the alkali metal ions is dependant on the charge density of cation and the size of crown ether cavity. For a given cation, the order of the extraction constant is $Cl^-$ < $Br^-$ < $I^-$ < picrate. This order coincides with the degree of anion solvation effect.

  • PDF

Effects of Annealing Temperature on Thermal Properties of Glycidyl Azide Polyol-based Energetic Thermoplastic Polyurethane (글리시딜아자이드계 열가소성 폴리우레탄의 열적특성에 대한 열처리 조건의 영향)

  • Kim, Jeong Su;Kim, Du Ki;Kweon, Jeong Ohk;Lee, Jae Myung;Noh, Si Tae;Kim, Sun Young
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.305-313
    • /
    • 2013
  • In this study, we investigated effects of thermal annealing on the thermal properties and microphase separation behaviors of glycidyl azide-based thermoplastic polyurethane elastomers (ETPE). The GAP-based ETPEs were characterized by attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and gel permeation chromatography (GPC). The effects of annealing temperature conditions ($80{\sim}130^{\circ}C$, 1 h or 24 h) on the properties of the ETPEs were investigated. The intensity of azide group absorption peak of ATR-FTIR spectra and the solubility of ETPE for methylene chloride and dimethylformamide solvent decreased after the annealing at $130^{\circ}C$ for 1 h and at $105^{\circ}C$ for 24 h. With increasing the annealing temperature from $80^{\circ}C$ to $110^{\circ}C$, the high temperature rubbery plateau region of storage modulus curves from DMA thermogram for GAP-based ETPEs was extended to the higher temperature.

Optimization of Extraction Conditions for Garlic Oleoresin and Changes in the Quality Characteristics of Oleoresin during Storage (마늘 Oleoresin 추출조건의 최적화 및 저장 중 품질변화)

  • Kim You-Pung;Lee Gil-Woo;Oh Hoon-Il
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.2
    • /
    • pp.219-226
    • /
    • 2006
  • This study was carried out to optimize the extraction conditions of oleoresin from garlic and to investigate its physicochemical changes during storage at $4^{\circ}C\;and\;25^{\circ}C$. Ethanol was used as solvent for extraction of oleoresin from garlic. On the basis of yield and thiosulfinate contents, the optimum mixing ratio of garlic to ethanol, extraction temperature, time, and number of extraction repeats were found to be 1 to 2(w/v), $30^{\circ}C$, 3 hours, and three extraction repeats, respectively. The yield and thiosulfinate contents of garlic oleoresin under the above condition were 14.52% and $209.93{\mu}mol/g$, respectively. Five volatile sulfide compounds were identified by GC/MS of garlic oleoresin, i.e., diallyl disulfide, methyl allyl trisulfide, 3,4-dihydro-3-vinyl-1,2-dithiin, 2-vinyl-4H-1,3-dithiin and diallyl trisulfide. After 30 days of storage at $4^{\circ}C$, the thiosulfinate content of garlic oleoresin was $32.37{\mu}mol/g$, while there was no detectable amount of thiosulfinate in the oleoresin stored at $25^{\circ}C$. Brown color and turbidity increased significantly during the storage of garlic oleoresin at $25^{\circ}C$ as compared to storage at $4^{\circ}C$, while relatively little change in acidity was observed in the oleoresin regardless of storage temperature.

A Study on the Antimicrobial Effect of Ginkgo biloba Leaves Extracts according to Concentrations of Ethanol for staphylococcus aureus (포도상구균에 대만 에탄올 농도별 은행잎 추출물의 항균효과에 관한 연구)

  • Lee, In-Hwa;Shim, Youn;Choi, Seung-Hyun;Park, Ju-Young;Han, Sung-Woo;Song, Jn-Young;Yoon, Suk-Jin
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.312-316
    • /
    • 2006
  • A optimal condition for the Ginkgo biloba extraction in ethanol and water binary solvent system has been proposed based on concentration of bilobalide and ginkgolide known as having a antimicrobial components in the range 5% to 70% ethanol in water at $80^{\circ}C$. Concentration of bilobalide as a single component of Ginkgo biloba leaves extract is the highest at the 60% ethanol and ginkgolide A and B is highest at 50% ethanol. Antimicrobial effect of Ginkgo biloba leaves extracts on the S. aureus was also examined by disc diffusion test and optical density test. In case of the disc diffusion test, the clean zone diameter was increased from 0.95 cm to 1.70 cm as ethanol concentration increased from 5 to 70%. However, over the 40% of ethanol concentration the antimicrobial effect was almost flat. Based on these results, we propose that the 40% of ethanol and 60% water solvent is most desirable for Ginkgo biloba extract considering vapor pressure problem in concentrating process after extraction. We introduced SEM and TEM to figure out the morphological change on the surface and inside body of S. aureus when Ginkgo biloba leaves extract was treated. After mixed with Ginkgo biloba leaves extract blast like blebs appeared on the surface of S. aureus cells and cell wall was not observed. From the these results, it seems that the Ginkgo biloba leaves extract including bilobalide and ginkgolide A, B prevent cell wall synthesis.

Effect of Drying and Extraction Methods on Antioxidant Activity of Gnaphalium affine D. DON (건조 및 추출 방법을 달리한 떡쑥(Gnaphalium affine D. DON)의 항산화 효과에 대한 연구)

  • Kim, Hye-Jin;Park, Byung-Geon;Han, Inhwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.5
    • /
    • pp.695-701
    • /
    • 2015
  • This study was conducted to evaluate the effects of drying and extraction methods on antioxidant activity and total phenol content of Gnaphalium affine D. DON (GA). Hot-air, shade-drying, and freeze-drying were used for drying, after which magnetic stirring and ultrasonification were applied. Extracting solvents were water, 80% ethanol, and 80% methanol. Total phenol content was highest in 80% ethanol extract of freeze-dried and stirred GA. Total flavonoid content was highest in 80% methanol extract of freeze-dried and stirred GA. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was higher in 80% methanol and 80% ethanol extracts than in water extract. 2,2-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity was highest in 80% ethanol extract of shade-dried and ultrasonicated GA. Reducing power was generally higher in 80% methanol extract than in 80% ethanol and water extracts of GA. Total phenol and total flavonoid contents were highly correlated with DPPH radical scavenging activity and reducing power, respectively. This result implies that the antioxidant activity of GA can be attributed to phenol compounds such as flavonoids. Conclusively, phenol compounds such as flavonoids are responsible for the antioxidant activity of GA, and there was no significant effect of drying and stirring conditions on antioxidant activity of 80% ethanol. Meanwhile, DPPH radical scavenging activity of water extract and reducing power of 80% methanol extract were higher in hot-air and shade-dried GAs than in freeze-dried GA.