Browse > Article

Effects of Annealing Temperature on Thermal Properties of Glycidyl Azide Polyol-based Energetic Thermoplastic Polyurethane  

Kim, Jeong Su (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University)
Kim, Du Ki (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University)
Kweon, Jeong Ohk (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University)
Lee, Jae Myung (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University)
Noh, Si Tae (Department of Chemical Engineering, College of Engineering Sciences, Hanyang University)
Kim, Sun Young (Research & Development Department, Hanwha Corporation Yeosu Plant)
Publication Information
Applied Chemistry for Engineering / v.24, no.3, 2013 , pp. 305-313 More about this Journal
Abstract
In this study, we investigated effects of thermal annealing on the thermal properties and microphase separation behaviors of glycidyl azide-based thermoplastic polyurethane elastomers (ETPE). The GAP-based ETPEs were characterized by attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and gel permeation chromatography (GPC). The effects of annealing temperature conditions ($80{\sim}130^{\circ}C$, 1 h or 24 h) on the properties of the ETPEs were investigated. The intensity of azide group absorption peak of ATR-FTIR spectra and the solubility of ETPE for methylene chloride and dimethylformamide solvent decreased after the annealing at $130^{\circ}C$ for 1 h and at $105^{\circ}C$ for 24 h. With increasing the annealing temperature from $80^{\circ}C$ to $110^{\circ}C$, the high temperature rubbery plateau region of storage modulus curves from DMA thermogram for GAP-based ETPEs was extended to the higher temperature.
Keywords
glycidyl azide polymer; energetic thermoplastic polyurethane; azide group; annealing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. W. C. Van Bogart, D. A. Bluemke, and S. L. Cooper, Polymer, 22, 1428 (1981).   DOI   ScienceOn
2 P. J. Yoon and C. D. Han, Macromolecules, 33, 2171 (2000).   DOI   ScienceOn
3 J. T. Koberstein and T. P. Russell, Macromolecules, 19, 714 (1986).   DOI
4 L. M. Leung and J. T. Koberstein, Macromolecules, 19, 706 (1986).   DOI
5 J. T. Koberstein, A. F. Galambos, and L. M. Leung, Macromolecules, 25, 6195 (1992).   DOI
6 D. J. Martin, G. F. Meijs, P. A. Gunatillake, S. J. Mccarthy, and G. M. Renwick, J. Appl. Polym. Sci., 64, 803 (1997).   DOI   ScienceOn
7 D. J. Martin, G. F. Meijs, G. M. Renwick, S. J. Mccarthy, and P. A. Gunatillake, J. Appl. Polym. Sci., 62, 1377 (1996).   DOI   ScienceOn
8 M. Kawamoto, M. F. Diniz, v. L. Lourenco, M. F. Takahashi, T. Keicher, H. Krause, K. Menke, and P. B. Kempa, J. Aerosp. Techonol. Manag., 2, 307 (2010).   DOI
9 E. diaz, P. Brousseau, G. Ampleman, and R. E. Prud'homme, Propell. Explos. Pyrot., 28, 210 (2003).   DOI   ScienceOn
10 A. K. Sikder and S. Reddy, Propell. Explos. Pyrot., 38, 14 (2013).   DOI   ScienceOn
11 B. Gaur, V. L. Choudhary, and I. K. Varma, J. Macromol. Sci. Poly. Rev., C43, 505 (2003).
12 H. Arisawa and T. B. Brill, Combust. Flame, 112, 533 (1998).   DOI   ScienceOn
13 H. Fazlioglu and J. Hacaloglu, J. Anal. Appl. Pyrolysis, 63, 327 (2002).   DOI   ScienceOn
14 M. S. Eroglu and O. Guven, J. Appl. Polym. Sci., 61, 201 (1996).   DOI   ScienceOn
15 T. Wang, S. Li, B. Yang, C. Huang, and Y. Li, J. Phys. Chem. Part B, 111, 2449 (2007).   DOI   ScienceOn
16 P. kubisa and S. Penczek, Prog. Polym. Sci., 24, 1409 (1999).   DOI   ScienceOn
17 A. Tsukamoto and O. Vogl, Prog. Polym. Sci., 3, 199 (1971).   DOI   ScienceOn
18 J. T. Koberstein and T. P. Russell, Macromolecules, 19, 714 (1986).   DOI
19 M. B. Frankel, L. R. Grant, and J. E. Flanagan, J. Propul. Power, 8, 560 (1992).   DOI
20 H. S. Kim, J. S. You, J. O. Kweon, J. S. Kim, D. S. Kim, S. T. Noh, Y. O. Chang, D. K. Kim, and S. G. Kweon, Appl. Chem. Eng., 21, 377 (2010).
21 L. M. Leung and J. T. Koberstein, Macromolecules, 19, 706 (1986).   DOI
22 J. T. Koberstein, A. F. Galambos, and L. M. Leung, Macromolecules, 25, 6195 (1992).   DOI
23 S. Yamasaki, D. Nishiguchi, K. Kojio, and M. Furukawa, Polymer, 48, 4793 (2007).   DOI   ScienceOn
24 J. T. Garrett, R. Xu, J. Cho, and J. Runt, polymer, 44, 2711 (2003).   DOI   ScienceOn
25 G. Ampleman, A. Marois, and S. Brochu, Recent Res. Developments Macromolecules Res., 3, 355 (1998).
26 Y. M. Mohan and K. M. Raju, Intern. J. Polym. Anal. Charact., 9, 289 (2005).
27 G. Holden, H. R. Legge, R. Quirk, and H. E. Schroeder, "Thermoplastic Elastomers", Hanser/Gardner Publications, Inc., Cincinnati (1996).
28 S. Pisharath and H. G. Ang, Polymer Degradation and Stability, 92, 1365 (2007).   DOI   ScienceOn
29 R. W. Seymour and S. L. Cooper, Macromolecules, 16, 48 (1973).