• Title/Summary/Keyword: 용가재

Search Result 46, Processing Time 0.022 seconds

Electrode bonding method and characteristic of high density rechargeable battery using induction heating system (유도 가열 접합 시스템을 이용한 대용량 이차전지 전극의 접합 방법 및 특성)

  • Kim, Eun-Min;Kim, Shin-Hyo;Hong, Won-Hee;Cho, Dae-Kweon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.688-697
    • /
    • 2014
  • In this study, electrode bonding technology needed for high density of rechargeable battery is studied, which is recently researched for electric vehicle, the small leisure vessel. For the alternative overcoming the limit of stacking amount able to be stacked by conventional ultrasonic welding, the low temperature bonding method, eligible for minimum of degeneration of chemical activator on the electrode surface which is generated by thermal effect as well as the increase of conductivity and tension strength caused by electrode bonding using filler metal, not using conventional direct heating on the electrode material method, is studied. Specifically to say, recently used more generally the ultrasonic welding and spot welding method are not usable for satisfying stable electric conductivity and bonding strength when much electrode is stacking bonded. If the electrical power is unreasonably increased for the welding, due to the effect of welding temperature, deformation of electrode and activating material degeneration are caused, and after the last packaging, decline of electrical output and generating heat cause to reduce stability of battery. Therefore, in this study, induction heating system bonding method using high frequency heating and differentiated electrode method using filler metal pre-treatment of hot dipping are introduced.

Evaluation of Vacuum Brazed WC and Stainless Steel for Oil Sands Plant (오일샌드 플랜트용 초경합금과 스테인레스강의 진공브레이징 특성평가)

  • Chang, Se-Hun;Cho, Seung-Hyun;Ahn, Seong-Woo;Heo, Joong-Sik;Kim, In-Pyo;Oh, Ik-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.48-52
    • /
    • 2016
  • Microstructure and tensile strength of the vacuum brazed stainless steel(STS304) and WC-8 %Co were investigated. For brazing, the BNi-2, 3(A.W.S standard) were used as filler metals. It was found that metallic compounds of W-Ni were observed at the between WC metrix and brazed layer. Among these filler metals, the BNi-2 showed excellent wettability, but tensile strength was lower than BNi-3. The fracture of the brazed specimens with BNi-2 was occurred at the between WC metrix and brazed layer. The fracture of the brazed specimens with BNi-3 was occurred at the between WC metrix and brazed layer, and between brazed layer and stainless steel.

熔接機器의 現況

  • 조흥전기산업(주)기술연구소
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.39-43
    • /
    • 1992
  • 용접은 자동차, 중공업, 조선, 건설, 항공 등 주요 기간산업의 기반기술로서, 금속가공분야 가운데 특히 접합부문에 특별한 의미를 내포하고 있다. 그러나 기반기술로서의 중요성도 불구하고 국 내산업전반에서의 용접은 비교적 낙후된 모습을 보이고 있는 것이 부인할 수 없는 실정이다. 용접이란, 금속가공의 일개공정을 의미하는 용어로 간단히 정의될 수 있지만 용접공정이 원만히, 성공적으로 수행되기 위한 준비되고 연구되어야 할 분야는 매우 복잡하고 다양한 양상을 띄고 있는데 우선, 모재와 용가재를 용해하기 위한 열원으로서는 전기에너지, 화학연소 에너지, LASER, 가속전자, PLASMA가 응용되고 있으며 그 에너지를 유효하게 용접에 이용하기 위한 주변장치로서는 TORCH, JIG, 각종 전자적 SENSOR각 활용되고 있다. 또한, 모재의 재질에 따른 용접재료와 소모성자재의 선택이 부수적으로 따르게 되어 각각의 분야에는 그 특성에 준 하는 학문적 이론이 광범위하게 적용되고 있다. 각종 구조물 제작이 용접의 최종적인 목적이라고 할 때, 제작에 따른 재료와 모재형상, 그리고 각종 기능적 요구에 부합하기 위한 열원, 재료, 용접방법, 검사방법등의 선택은 종합적인 학문적 이론과 실제적 응용이 뒷받침 돼야 함을 전제 로써, 본고에는 용접전반의 문제중, 전기용접기기 및 용접관련 자동화 설비의 현주소 파악과 문 제의 접근측면에서만 간단히 기술하고자 한다.

  • PDF

Evaluation on the Applicability as Filler materials of Ni-Based Super Alloying Nano Size Powder by Pulsed Wire Evaporation(PWE) Method (전기폭발법으로 제조된 니켈기 초내열합금 나노분말의 용가재로의 응용가능성에 관한 평가)

  • Kim, Gyeong-Ho;Lee, Min-Gu;Kim, Gwang-Ho;Lee, Chang-Gyu;Kim, Heung-Hui
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.168-170
    • /
    • 2005
  • Nickel base brazes containing boron and silicon as melting point depressants are used extensively in the joining and repair of hot-section components in next generation nuclear reactor and aero-engine. Therefore, the present study has investigated the preliminary applicability of nickel based alloying nano powders. Nano Ni-based alloying powders synthesized by Pulsed Wire Evaporation (PWE) method. It's powder morphology and phase transformation temperature were analyzed by scanning electron microscopy, transmission electron microscopy, and differential scanning calorimeter(DSC). The powder particle size was approximately 10${\sim}$100nm and exhibits a quite even equiaxed shape. The results of DSC measurement show that both the nano Inconel 625 nano powder and Inconel 718 nano powder presents similar liquidus temperatures approximately $1373^{\circ}C$ and $1380^{\circ}C$ respectively.

  • PDF

Study on The Status of Welded Parts According to The Types of Shielding Gas in TIG Welding (TIG용접에서 실드가스 종류의 변화에 따른 용접부의 변화상태 고찰)

  • Kim, Jin-Su;Kim, Bub-Hun;Lee, Chil-Soon;Kim, Yohng-jo;Park, Yong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.38-43
    • /
    • 2015
  • Tungsten inert gas (TIG) welding is commonly used in industries that require airtightness, watertightness, oiltightness, and precision. It is a non-consumable welding method that is commonly used for the welding of non-ferrous metals, but it can be used to weld most metals. The methods of TIG welding can be divided into three types. The first, manual welding is done directly on the metal by a welder with a torch. The second, semi-automatic welding, gets help from a material supplying machine, but it is conducted by a welder. Lastly, automated welding is conducted fully by a machine during its process and operation. Depending on the selection of electrode, the amount of heat that is applied to the base material and the electrode rod changes and makes the shape of welded parts different. A direct-current positive electrode was used for this study. Through the change of shielding gas type on a structural steel (SS-400) that is commonly used in industry, the composition and shape changes in welded parts were detected after welding. The heat-affected area, hardness value, and tensile strength were also identified through hardness testing and tensile testing. In this study, it was found that the higher hardness value of the heat-affected is, the weaker the tensile strength becomes.

Analysis of Broad-Band Electromagnetic Wave Absorber for Single Polarized Wave by the Equivalent Material Method and the FDTD Method (등가재료정수법 및 FDTD법에 의한 단일편파용 광대역 전파흡수체의 해석)

  • 이수영;김동일;이종헌
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.3
    • /
    • pp.296-304
    • /
    • 1998
  • A design method of an electromagnetic wave absorber with ferrite fins in the second layer, which has very wide band frequency characteristics and is used for single-polarized wave absorption such as TV wave etc, has been designed. To examine the effectiveness of the Equivalent Material Constants Method$(EMCM)^{[1]}$ which is approximate method, the effective complex permittivity calculated by the Hashin-Strikman formulas and the EMCM are compared. Since, furthermore, the reflectivities by the EMCM in space and the FDTD method in an rectangular waveguide agreed well each other, it has been confirmed that the proposed electromagnetic wave absorber has excellent absorption characteristics in the frequency range of 30 MHz to 5830 MHz. Thus, it can be concluded that the EMCM is usefull to design and analyze the electro-magnetic wave absorber proposed here.

  • PDF

A Study on the Zircaloy-4 Brazing with Beryllium Filler Metal for the Nuclear Fuel (베릴륨 용가재를 사용한 핵연료피복재 지르칼로이-4 브레이징에 대한 연구)

  • 고진현;김형수
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.70-78
    • /
    • 1993
  • An attempt was made to investigate the effect of brazing time on microstructure, microhardness, and corrosion of Zircaloy -4as well as the beryllium diffusion into its sheet. The sheets were coated with beryllium and brazed at $1020^{\circ}C$ for 20-40 minutes in $2{\times}10^{-5}$ torr vacuum atmosphere. 1. Microstructurally the brazed zone was largely divided into three regions: a region of continuous or partially formed of eutectic liquid films along grain boundaries; a region of precipitation in both grains and grain boundaries; a region of elongated wide structure of .alpha.-laths, which was not affected by beryllium. 2. Due to the precipitates, the beryllium-migrated region was hardened and the width of the hardened region increased with increasing brazing time. 3. Beryllium brazed Zircaloy -4 sheets showed a higher corrosion rate than those of as-received and heat-treated at a brazing temperature. 4. Diffusion coefficient of beryllium into Zircaloy -4 at $1020^{\circ}C$ for 30 minutes was $7.67{\times}10^{-7}cm^2/sec.$ It seemed that Be penetrated Zircaloy -4 by forming eutectic liquid films along grain boundaries in the proximity of Be/Zr interface and it, thereafter, diffused into Zircaloy mainly by interstitial solid solution.

  • PDF

Integrated High Voltage Trigger and Simmer power supply for Xenon Lamp (제논 램프 구동용 트리거 및 지머 통합 회로)

  • Jia, Ziyi;Cho, Chan-Gi;Song, Seung-Ho;Jeong, Woo-choel;Park, Hyun-Il;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.51-53
    • /
    • 2018
  • This paper describes the design and implementation of a circuit consisting of a simmer power supply unit and a series trigger unit that can be applicable to xenon lamp driving. An LCC resonant converter based on the continuous conduction mode (CCM) is applied to the simmer circuit and by using the current output control it is possible to maintain the ionization of the lamp which has the negative resistance load characteristic. At the same time, in order to generate a high voltage, a series trigger circuit which has a number of capacitors and diodes is designed. The generated high trigger output voltage could ionize the xenon gas. This paper explains the configuration and features of the integrated circuit system, and verifies the proposed design and stable operation of the xenon lamp. The experimental and simulation results show the not only rationality but also stability of the proposed circuit.

  • PDF

Effects of High Current and Welding Wire Diameter on the Magnesium Vaporization and Mechanical Properties of Al5083 Arc Welds (대전류 및 용가재 직경에 따른 Al5083 아크 용접부 마그네슘 기화 및 기계적 성질)

  • Kwon, Heimi;Park, Chul-Ho;Hong, In-Pyo;Kang, Namhyun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.84-89
    • /
    • 2013
  • The demand of LNG tank and the constituting material, i.e., the Al5083 thick plate, increased due to the rapid growth LNG market. To weld the Al5083 thick plate, the gas metal arc welding (GMAW) of high current is necessary to increase manufacturing productivity incurred by the multi pass welding. However, the arc welding vaporizes the volatile element such as magnesium (Mg). This phenomenon changes the Mg composition of the weld metal and the mechanical properties. The study investigated the weldability of Al5083 alloys after conducting high current GMAW. The Al5083 alloy was welded by using different size of welding wires and high current (800-950A). As the arc current increased from 800A to 950A, the mechanical strength decreased and the secondary dendrite arm spacing (SDAS) increased. Even though the arc current increased SDAS, the mechanical strength decreased due to the Mg loss in the weldment. The large diameter of welding wire decreased the dilution of the weld, therefore increasing the Mg content and the strength of the weld. For the reason, the content of Mg in welds was a major parameter to determine the mechanical property for the high current GMAW. For the arc current between 800A and 950A, the yield strength of the weldments showed a relationship with the weight percent of Mg content ($X_{Mg}$): Y.S = 27.9($X_{Mg}$)-11.

A Study on Implementation of Robot Overlay Welding System Based on OLP for Ball of Ball Valves (볼밸브용 볼의 OLP 기반 로봇육성용접 시스템 구현에 관한 연구)

  • Jang, Jae-Sung;Hwang, Seong-Hyun;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.446-452
    • /
    • 2016
  • Recently, heat resistant super alloys (which are wear-resistant, corrosion-resistant, and heat-resistant), have been used as the basic structural material in offshore and petrochemical plants. On the other hand, making valves from very expensive, high heat-resistant alloys increases the production cost and decreases its market competitiveness. To solve these problems, the technique of overlaying only those that flow on the fluid has been used as an effective method. Nevertheless, because the former technique of overlaying the ball is performed manually, it takes too much time and perfect welding is difficult to perform. To solve this problem, this study developed a robot automation system that can make uniformly overlay welding of the ball for ball-valves. The system consists of a 6-axis welding robot with a welding torch and additional 2 axes for the rotation of positioner, the controller, and a robot path OLP (Off-Line Programming). The CAD drawing data was entered in the Off-line program to obtain the robot teaching point and drive source. Overlay welding paths were implemented using Matlab. Through an automated overlaying system that implemented the OLP, the productivity rose 2.58 times, as the amount of time required for work decreased from 88 hours to 41 hours.