• 제목/요약/키워드: 외피 시스템

검색결과 74건 처리시간 0.024초

동절기 이중외피 시스템에 적용 가능한 PCM재료의 온도설정에 따른 실내 열 성능 분석에 관한 연구 (Study on Indoor Thermal Performance Analysis upon PCM Temperature applicable to the Double Skin Facade System in the Winter)

  • 류리;서장후;김용성
    • KIEAE Journal
    • /
    • 제15권3호
    • /
    • pp.43-48
    • /
    • 2015
  • Purpose: Recently, many countries around the world are actively looking for the ways to make full use of natural energy sources and also develop and apply an environmentally friendly system designed to save building energy consumption. Under these circumstances, this study intended to determine the applicability and energy saving effect by deriving the indoor thermal performance characteristics and the PCM temperature appropriate for a double skin façade to reduce indoor energy consumption through the application of different PCM temperatures to double skin façade and perform a performance evaluation depending on the application or non-application of PCM to a double skin façade. Method: For this study, the physical variables of the double skin façade with PCM were configured through a preliminary examination based on an experimental measurement, and experimental measurements were taken with a total of 7 types of mockup cases: Type-1 (Basic), the basic double skin façade, Type-2 (PCM $18^{\circ}C$) which was applied to the inner skin of the double skin façade depending on the phase-change temperature of PCM, Type-3 (PCM $20^{\circ}C$), Type-4 (PCM $22^{\circ}C$), Type-5 (PCM $24^{\circ}C$), Type-6 (PCM $26^{\circ}C$), and Type-7 (PCM $28^{\circ}C$) with reference to the data analysis of the basic double skin façade which preceded this study, to analyze the indoor thermal performance of the double skin façade depending on PCM temperature and the installation or non-installation of a double skin façade applying PCM based on the selected unit space. Result: Indoor thermal performance was analyzed depending on the PCM temperature applicable to double skin façade, and the analysis of heating energy reduction showed that Type-2 (PCM $18^{\circ}C$) gained 15.9% more heat compared with Type-1 (Basic) and secondly, Type-3 (PCM $20^{\circ}C$) gained 11.5% more heat. Based on these findings, it is deemed possible that the use of energy for heating can be reduced when heat coming indoors increases during the heating period, and the appropriate temperature for PCM applied to the inner skin of a double skin façade to reduce heating energy in winter, Type-2 (PCM $18^{\circ}C$) showed the highest efficiency and Type-3 (PCM $20^{\circ}C$) was also deemed appropriate.

소규모 사무실 공간에서 간접조명에 대한 조광제어 시스템효율 (Control Efficiency of a Daylight Dimming System for Indirect Lighting in a Small Office)

  • 김수영;정용호;손장열
    • 한국태양에너지학회 논문집
    • /
    • 제26권3호
    • /
    • pp.33-43
    • /
    • 2006
  • Daylight dimming control system was analyzed for an indirect lighting system in a small office space with a double skin envelope system. Computer simulations were performed for photosensors with three shielding conditions. The photosensors were placed on the center of ceiling, and backwall. Three sky conditions defined by CIE were considered. Overall, control performance was not very excellent for all conditions. Fully-shielded photosensor achieved good control performance for some cases, but partially-shielded and unshielded photosensors failed to achieve target illuminance. The variation in desktop illuminance due to daylight was examined for a variety of daylight conditions. Linear correlation between desktop illuminance and photosensor illuminance was analyzed using ANOVA.

적층된 외피를 갖는 샌드위치로 구성된 위성체 안테나 시스템의 모드 해석과 파손안전성 판별 (Modal Analysis and Failure Safety Estimation for the Satellite Antenna System Composed of Sandwich Structure with Laminated Face Sheet)

  • 오세희;한재흥;오일권;신원호;김천곤;이인;박종흥
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.228-233
    • /
    • 2001
  • Satellite system experiences severe mechanical loads during the launch period. Therefore, positive margin of safety of the satellite system must be demonstrated for every possible mechanical loading condition during the launch period. This paper presents modal and stress analysis result due to quasi-static loads for the satellite antenna system. The failure tendency for the sandwich construction of the satellite antenna system has been studied with various lamination angles of unidirectional prepreg.

  • PDF

이중외피시스템을 적용한 고층 주거용건물의 자연환기 성능평가 (A Study on Natural Ventilation Performance for a Double-Skin Facade System in Apartment Buildings)

  • 석호태;김동화;최정민
    • 한국주거학회논문집
    • /
    • 제14권3호
    • /
    • pp.119-126
    • /
    • 2003
  • The purpose of this study is to evaluate the natural ventilation performance for variable external wind speed as a preliminary step to determining the seasonal operating modes of the Double-skin Facade System applied to apartment buildings. For this purpose, two simulation programs are used to compare the Double-Skin Facade System with the Double Sash Window. First, TAS is used to plan a schedule for natural ventilation during the intermediate season and to analyze the cooling loads. Second, CFD is used for a more detailed airflow analysis on a typical floor plan of the model building. The results of the simulations on natural ventilation performance show that the Double-Skin Facade System can reduce the cooling load by 10.5% compared to the Double Sash Window.

초고층 오피스 건물의 수직외부환경 변화가 건물부하에 미치는 영향 (A Building Heating and Cooling Load Analysis of Super Tall Building considering the Vertical Micro-climate Change)

  • 김양수;송두삼;황석호
    • KIEAE Journal
    • /
    • 제10권4호
    • /
    • pp.117-122
    • /
    • 2010
  • In these days numerous super tall buildings are under construction or being planned in Middle East and Asian countries. Some of them are planned as an ultra high-rise building that goes over 600m tall, including Burj Khalifa, the tallest building in the world. External environment such as wind speed, temperature and humidity of the super tall building varies due to its vertical height. Therefore, it is necessary to consider these environmental changes to estimate building heating and cooling load. This paper analyzes how vertical microclimate difference affects building heating and cooling load in super tall building by simulation using radiosonde climate data. Besides, the correlation between air-tightness of building envelope and building load was analyzed for a super tall building.

패시브환기외피의 열성능 수치시뮬레이션 (Numerical Simulation on Thermal Performence of Passive Ventilation Skin)

  • 이태철;손유남;윤성환
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.144-149
    • /
    • 2011
  • This study aims to evaluate performance of ventilation and thermal about breathing wall by flowing air to indoor on appropriate conditions that is effective aperture area in the Central region(20, 50, $80cm^2/m^2$). The result is as follows : 1) Sectional temperature distribution of inflow and outflow out under the constant ventilation was reviewed. In the case of inflow, outside temperature increase effect was confirmed. 2) The more differences of temperature between outdoor and indraft of air was high, the more heat recovery was high.

  • PDF

리츠 법을 이용한 열방어 시스템 패널의 열 좌굴 특성 연구 (Thermal Buckling Characteristics for Thermal Protection System Panel Using Ritz Method)

  • 이희수;김용하;박정선
    • 항공우주시스템공학회지
    • /
    • 제13권1호
    • /
    • pp.18-28
    • /
    • 2019
  • 초고속 비행체는 발사 및 재진입 시 공력 가열에 의해 높은 열 하중을 받는다. 초고속 비행체의 외피 구조물인 열방어 시스템 패널은 기계적으로 구속되어 있기 때문에 고온 가열 시 열 좌굴이 발생할 수도 있다. 이는 초고속 비행체의 유동장에 변화를 주어 공력특성을 불안정하게 한다. 따라서 열방어 시스템 패널은 초고속 비행에 의한 공력가열 시 비행안정성을 유지하기 위해 열 좌굴을 방지하도록 설계되어야 한다. 본 논문에서는 운용 시 안팎에 큰 온도차가 존재하는 열방어 시스템 패널에 대해 유한차분법을 사용하여 열전달 특성을 분석하였으며, 리츠 법을 사용하여 열 좌굴 특성에 대한 근사적 모델을 제안하였다. 또한 정의된 근사적 모델의 정확도를 검증하기 위해 유한요소 해석결과와 비교하였다. 마지막으로, 수립된 근사 기법을 바탕으로 열방어 시스템 패널의 좌굴 발생 온도에 대한 매개변수 분석을 수행하였다.

태양광 무인기 복합재 윙 리브 최적 제작 연구 (Optimal Manufacturing of Composite Wing Ribs in Solar-Powered UAVs: A Study)

  • 양용만;김명준;김진성;이수용
    • 항공우주시스템공학회지
    • /
    • 제10권4호
    • /
    • pp.50-58
    • /
    • 2016
  • 선행 연구 개발을 통하여 장기 체공 태양광 무인기 복합재 날개의 경량화는 매우 중요한 요소임을 확인하였다. 날개 외피의 좌굴 방지와 비틀림 방지 역할을 하는 구조물인 리브는 날개의 구성 요소 중에 필수적이다. 본 연구는 최적의 복합재 리브를 설계, 제작하기 위하여 복합소재의 이방성 특성을 고려한 다양한 적층 패턴 적용 및 형상에 대하여 리브를 제작하였고. MSC. Patran/Nastran을 이용한 유한요소 해석을 통하여 최대 하중 및 변위 형상을 확인하였으며, 구조 시험을 통하여 측정된 시험 결과를 바탕으로 최적의 리브를 제시하였다.

친환경 건축에서의 요소기술을 통한 외피계획에 관한 기초연구 -노먼 포스터(Norman Foster) 작품을 중심으로- (A Preliminary Study on Outer Shell Plan through Element Technologies in Eco-friendly Architecture -Focused on Works of Norman Foster -)

  • 류리;서장후;김용성
    • 한국디지털건축인테리어학회논문집
    • /
    • 제13권4호
    • /
    • pp.69-76
    • /
    • 2013
  • As the energy consumed in building area has occupied a lot when looking into energy usage weights in area over the world, energy reduction building, eco-friendly architecture comes to the fore in the modern architecture. Discussions on the eco-friendly architecture have various concept definitions and targets to be achieved.The architectural works of Norman Foster are expressed as high-tech buildings using iron, glass, etc. in appearance, but they appear as those buildings with low energy load by analyzing environmental conditions from initial design stage that each building has, utilizing natural energy with design of outer shell and applying proper technical system. Thus, this study aims at providing basic data of outer shell planning through eco-friendly element technologies by considering pattern and outer shell design of buildings, principles of eco-friendly building plan as an eco-friendly building planning technique of Norman Foster as an example of plans to utilize building pattern, outer shell design and natural environments, in order to utilize passive measures as much as possible to increase energy saving methods and increase comfort by analyzing element technologies in the eco-friendly architecture in line with the modern flow.

전동 블라인드 내장형 창호시스템 적용에 따른 공동주택 에너지 성능평가 연구 (Energy Performance Evaluation of Apartment Building in Case of Applying a Blind Integrated Window System)

  • 최경석;손장열
    • 설비공학논문집
    • /
    • 제22권7호
    • /
    • pp.429-435
    • /
    • 2010
  • Although recently revised building code requires 15~20% increased thermal insulation performance for window systems, since the code is focusing on winter heat loss, it is not satisfactory to contribute on reducing rapidly rising cooling load in summer. Window systems have great impact on building heat gain and loss. Therefore technological development for window system specialized in shading solar gain in summer is an urgent matter. This study evaluates the performance of sun shading and thermal insulation for blind integrated window system. Also, computer simulation evaluates the effect of heating and cooling energy consumption reduction for an individual unit(floor area of $85m^2$) of a multi-family housing. Physibel Voltra, a heat transfer analysis software, was used to analyse the effect of energy consumption reduction, and the energy load was converted to the cost to compare the actual effect of economical benefit.