• Title/Summary/Keyword: 외부탄소원

Search Result 90, Processing Time 0.026 seconds

Extraction of organic carbon from the condensate of food waste dry feed process (음식물류폐기물의 건식사료화 공정에서 발생되는 응축수로부터 유기탄소 추출)

  • Kim, Min-Kyung;Kwon, Ki-Wook;Mo, Kyung;Cui, Feng-Hao;Park, Se-Yong;Kim, Moon-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.2
    • /
    • pp.41-48
    • /
    • 2020
  • In this study, organic carbon was extracted from the condensed water of food waste drying process to estimate the applicability as external organic carbon sources. The COD, TN, TP and TS of condensed water were 21,374 mg/L, 148 mg/L, 4.19 mg/L, and 455.7 mg/L, respectively. In addition, the content of biodegradable organics in condensed water was 47%. The fractional distillation and the vacuum evaporation were employed for extracting organic carbon. There were 8 extraction conditions, but 4 conditions were available for extraction. They were 1) 0mmHg, 110℃ 2) -600mmHg, 70℃ 3) -500mmHg, 80℃ 4) -600mmHg, 80℃. All 4 conditions showed the highest organic concentration and the highest quantity of organics when extracted 10% of initial volume. It was estimated that optimum conditions were 80℃, -600mmHg and 10% extraction. Then, extraction concentration, extraction quantity, extraction efficiency, extraction time, BOD/TCOD ratio, TVFAs/TCOD ratio and NH3-N were 174,200 mg/L, 8,710 mg, 46%, 10 min, 0.97, 0.74 and 75.5 mg/L respectively. Therefore, the extracted organic carbon can be utilized as external organic carbon sources.

The Characteristics of Microbial Population Community Structure by an Addition of External Carbon Source in BNR Process for Low C/N Ratio Sewage Treatment (낮은 C/N비 하수의 외부 탄소원 주입에 따른 생물학적 질소제거에서 미생물 군집 구조특성)

  • Yoon, Cho-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.831-838
    • /
    • 2008
  • This study investigated the characteristics of nitrogen removal and microbial community in a lab-scale A$_2$O activated sludge process filled with the fluidized media at an aerebic basin. The change of microbial community was monitored based on quinone profiles of activated sludge according to feeding sewage with/without external carbon source. Low C/N ratio(COD$_{Cr}$/T-N of 1.24) sewage was fed. The obtained results from this study were as follows; Ubiquinone(UQ) in the influent was in the descending order of UQ-8, UQ-10 and UQ-9. Menaquinone(MK) was simpler and much less than UQ. The ratio of UQ/MK was less than 0.41 and the dissimilarity was below 0.26. Without an external carbon source, MK-8 was the dominant species and there were 3 kinds of quinone species and low DQ and EQ values in an anaerobic basin. The ratio of UQ/MK increased to 2.3 in an anoxic basin. In an oxic basin, UQ-7 and UQ-8 were the dominant species. UQ-7 was dominating in suspended microorganisms, while UQ-8 was in attached microorganisms. With an external carbon source addition, MK-8 decreased but UQ-8 increased in an anaerobic basin. So did quinone species, DQ and EQ values. There was also a change in an anoxic basin with the improvement of denitrification. UQ-8 decreased instead, MK-7 and MK-8 increased. UQ/MK ratio decreased 2.3 to 1.4. It means that the dominant species change from Pseudomonas sp. to Bacillus and Micrococcus species. etc. In an oxic basin, UQ-8 replaced UQ-7 in suspended microorganisms and UQ-10 replaced UQ-8 in attached microbials. This seemed related with the growth of Nitrosomonas and Nitrobactor species.

Removal Characteristics of Nitrogen and Phosphorus in swine wastewater by Using Acetic acid on the SBR Process (SBR에서 아세트산을 이용한 양돈폐수의 질소·인 제거 특성)

  • Huh, Mock;Kang, Jin-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.84-93
    • /
    • 2004
  • This study was performed : 1) to find the suitable HRT(hydralic retention time), 2) to evaluate the effects of the ratio of mixing/aeration time and injection time of external carbon source, for the removal of organics, nitrogen and phosphorus in swine wastewater by SBR(sequencing batch reactor process), which is one of the biological treatment process. The result of this study were summarized as follows : (1) As the ratio of mixing/aeration time was higher, $NH_4{^+}-N$ removal efficiency was increased and it was increased with increasing injection time of external carbon source because nitrification was affected by denitrification microbes propagation when injection time of external carbon soruce was shorted. T-N removal efficiency was increased with increasing the ratio of mixing/aeration time and injection time of external carbon source. (2) The T-P removal efficiency showed a great difference in each operating condition, and it was increased with increasing the ratio of mixing/aeration time increased and when the injection time of external carbon source was shorted because denitrification was done with effect by denitrification microbes propagation. (3) The highest removal efficiency of organic and nitrogen were obtained by the operating condition of Run 4-1(the ratio of mixing/aeration time : 16.5/5.5, injection time of external carbon source : 15hours) and T-P were obtained by the operation condition of Run 4-2(the ratio of mixing/aeration time : 16.5/5.5, injection time of external carbon source : 3hours), and efficiency(effluent concentration)of $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, T-N and T-P in the treated water was 96.1%, 87.7%, 90.6%, 86.6% and 84.5%, respectively.

  • PDF

Sequencing batch reactor treating ship sewage and external carbon source (연속 회분식 공정을 이용한 선박오수와 외부탄소원의 혼합처리)

  • Park Sang-Ho;Choi Jeong-Hye;Ko Sung-Chul;Kim In-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.147-152
    • /
    • 2004
  • In Sequence Batch Reactor (SBR), the removal efficiencies if nutrient materials such as nitrogen and phosphate depend highly on quantity and quality of organic carbon source. Food waste thai contains abundant organic materials has been produced in ship. The applicability if anaerobically fermented if food waste (AFFW) as an external carbon source was examined in the lab-scale SBR process operated at $25^{\circ}C$. With the addition if AFFW increased, average removal efficiencies if $COD_cr$, T-N, T-P changed to $98.5\%,\;95\%,\;93\%$, respectively. Denitrification rate is 0.30g $NO_3-N/g\;VSS{\cdot}day$. In summary, it was suggested tint AFFW sould be used as an economical and effective carbon source for the biological nitrogen and phosphate removal.

  • PDF

Optimization of Chlorella saccharophila Cultivation and Useful Materials Production (Chlorella saccharophila 배양 최적화 및 유용물질의 생산)

  • Kim, A-Ram;Park, Mi-Ra;Kim, Hyo Seon;Kim, Sung-Koo;Jeong, Gwi-Taek
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.74-79
    • /
    • 2017
  • In this study, the optimization of several factors for Chlorella saccharophila cultivation was investigated. The studied factors were medium type, culture type, inoculum size, sugar/nitrogen source type and concentrations. As a result, the optimized conditions for C. saccharophila cultivation were found to be the best at 3% (v/v) inoculum, 30 g/L glucose and 0.95 g/L $NaNO_3$ under mixotrophic culture. Under the optimized condition, the content of oil was high at 12 day, whereas, the amount of biomass and chlorophyll were high at 10 day.

A Study on Process of Condenced Water in the Speedy Drying System (고속건조시스템의 응축수 공정 개선에 관한 연구)

  • Han, Doo-Hee
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.97-99
    • /
    • 2009
  • 본 논문에서는 유기성 폐기물을 처리하는 과정에서 발생하는 응축수의 제조 방법 및 성능들을 보고하였다. 유기성 폐기물을 밀폐된 교반조에서 수증기에 의한 연속적인 가열을 통하여 고액을 분리하여 열교환기를 거쳐 액상으로 배출되는 것이 응축수 제조 공정이며, 다량의 유기물을 포함하기 때문에 액비, 탈취제 및 하수처리장에서 외부탄소원으로 활용 가능하다.

  • PDF

Removal Characteristic of Nitrogenous Compounds According to the Combination of Feeding Ratio between the Supernatant of Precipitation Tank and Raw Domestic Wastewater (침전조 상등액과 유입하수의 유량대비에 따른 하수 내 질소 화합물 제거특성)

  • Park, Sang Min;Park, Jin Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.128-135
    • /
    • 2005
  • This study was done to improve the effectiveness of nitrification and denitrification using the aeration-anoxic combination method using CFSTR(continuous-flow stirred-tank reactor) attached with an anoxic reactor filled with a media. In order to calculate the concentration of nitric acid within the aeration tank proportional to the anoxic rate within the reactor, supernatant within the inflow and precipitation tanks were influxed into the anoxic reactor. The rate of nitrogen removal was calculated using the concentration of inflow and flow of returned supernatant. From the results of this experiment, the carbon source needed in the anoxic reactor came from the inflow so that anoxification was achieved completely using the inflow source without the introduction of an external carbon source. However, as the ratio of nitric acid becomes large in inflow and nitric acid flow, the carbon source within the input source decreases so that the concentration of carbon source is important.

  • PDF

Evaluation of External Carbon Source on the 2 Stage Denitrification Process by Simulation of GPS-X (GPS-X 시뮬레이션을 이용한 2단탈질 공정에서 외부탄소원 적용성 평가)

  • Chung, Chang-Wha;Shim, Yu-Seop;Kim, Tae-Hyung;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.1
    • /
    • pp.37-48
    • /
    • 2004
  • The purpose of this study was to evaluate adaptability of external carbon source using GPS-X program in pilot plant composed with 2-stage denitrification process. The result from analysis of pilot plant operation and GPS-X simulation showed that effluent concentration could be simulated similarly by modifying operation conditions, such as DO concentration, C/N ratio and other calibrated parameter. In order to satisfy the standard of the effluent water quality on T-N of 20mg/L, it required approximately 3.1 of C/N ratio and 50% of nitrogen removal efficiency when influent T-N is 36.9mg/L. To maintain the stable water quality of the receiving water, the effluent T-N concentration should be less than 10-15mg/L and the appropriate C/N ratio to remove nitrogen was 4.27-6.82. The analysis of sensitivity to kinetic coefficient and reaction constant showed that $Y_H$ and ${\mu}_{mAUT}$ were most sensitive to nitrate and ammonia nitrogen, relatively and sensitivity coefficient of their were 1.32, 1.98. It was concluded that as $Y_H$ decreased and ${\mu}_{mAUT}$ increased, the reaction rates of denitrification and nitrification increased and the removal efficiencies of $NO_3{^-}-N$ and $NH_4{^+}-N$ improved.