• Title/Summary/Keyword: 외부접합형

Search Result 50, Processing Time 0.022 seconds

Seismic Performance Evaluation of Medium-and Low-rise R/C Buildings Strengthened with RCSF External Connection Method by Pseudo Dynamic Test (유사동적실험에 의한 RCSF 외부접합공법으로 내진보강 된 중·저층 철근콘크리트 건물의 내진성능 평가)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • In this study, a new RCSF (Reinforced Concrete Steel Frame) external connection method is proposed for seismic strengthening of medium-and low-rise reinforced concrete buildings. The RCSF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside structures. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and ductility. Test results revealed that the proposed RCSF strengthening method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Seismic Performance Evaluation of Seismic Strengthening Method using SRCF External Connection of Medium and Low-rise R/C Buildings (중·저층 철근콘크리트 건물의 SRCF 외부접합 내진보강공법의 내진성능 평가)

  • Lee, Kang-Seok;Jung, Jue-Seong;Lee, Jong-Kweon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.147-155
    • /
    • 2015
  • A new SRCF (Steel Reinforced Concrete Frame) external connection method for seismic strengthening of medium-and low-rise reinforced concrete buildings is reported in this paper. The SRCF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside building. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and deformation. Test results revealed that the proposed SRCF strengthening method installed in RC frame enhanced conspicuously the strength and deformation capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Seismic Performance Evaluation of R/C Frame Apartment Strengthened with Kagome Truss Damper External Connection Method by Pseudo Dynamic Test (유사동적실험에 의한 외부접합형 카고메 트러스 제진장치가 설치된 RC 라멘조 공동주택의 내진성능 평가)

  • Heur, Moo-Won;Chun, Young-Soo;Hwang, Jae-Seung;Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.23-34
    • /
    • 2015
  • Recently a new damper system with Kogome truss structure was developed and its mechanical properties were verified based on the laboratory test. This paper presents a Kagome truss damper external connection method for seismic strengthening of RC frame structural system. The Kagome external connection method, proposed in this study, consisted of building structure, Kagome damper and support system. The method is capable of reducing earthquake energy on the basis of the dynamic interaction between external support and building structures using Kagome damper. The pseudo-dynamic test, designed using a existing RC frame apartment for pilot application of LH corporation, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and response ductility. Test results revealed that the proposed Kagome damper method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Strength of Exterior Flat Plate-Column Connections Subjected to Unbalanced Moment (불균형 휨모멘트를 받는 플랫 플레이트-기둥 외부접합부의 강도)

  • Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.470-481
    • /
    • 2003
  • Exterior plate-column connection has an unsymmetrical critical section for eccentric shear of which perimeter is less than that of interior connection, and hence, around the connection, unbalanced moment and eccentric shear are developed by both gravity load and lateral loads. Therefore, exterior connection is susceptible to punching shear failure. Current design provision cannot accurately explain strength of existing experiments, partly due to the complexity in the behavior of exterior plate-column connection, or partly due to the theoretical deficiency of the strength analysis model adopted. In the present study, nonlinear finite element analyses were performed for exterior connections belonging to continuous flat plate. For each direction of lateral load, the behavior and strength of exterior plate-column connection were quite different. Based on the numerical result, strength prediction model for exterior connection was proposed for each direction of lateral load. Compared with existing experiments, the proposed method was verified.

A Study on the Strength of H Beam-to-Rectangular Tube Column Connections with Exterior Diaphragms by Simplified Tension Test (단순 인장 실험에 의한 외부 스티프너를 갖는 각형 강관기둥과 H형강보 접합부의 최대내력에 대한 연구)

  • Park, Jong Won;Kang, Hae Kwan;Lee, Sang Hoon;Kim, Young Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.25-35
    • /
    • 1998
  • A moment connection of H beam-to-rectangular tube column with external stiffeners was proposed. A formula to predict the ultimate strength of the connection was derived based on the yield line mechanism. Experimental investigation was performed to determine the applicability of the connection type and the strength formula. The ultimate strengths computed by the formula agreed well with the experimental values.

  • PDF

Inelastic Seismic Response Control of the RC Framed Apartment Building Structures Using Exterior-Installed Kagome Damping System (외부접합형 카고메 감쇠시스템을 사용한 철근콘크리트 라멘조 공동주택 비탄성 지진 응답 제어)

  • Hur, Moo-Won;Chun, Young-Soo;Lee, Sang-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.58-65
    • /
    • 2016
  • Various passive energy dissipation systems have been proposed and widely applied to real building structures under seismic load due to their high energy-dissipation potential and low cost for installation and maintenance. This paper presents nonlinear dynamic analysis results of the effectiveness of exterior-installed Kagome damping system(EKDS) in passively reducing seismic response. Kagome damping system proposed by previous studies has isotropic and bi-linear hysteretic characteristics and the installation configuration is newly presented in this study. The 15 and 20 story RC framed apartment buildings are used for verifying the effectiveness of the EKDS. The stiffness ratio of the damper supporting column to the original building, the number of the dampers, and the installed stories were considered as design parameters. Numerical results demonstrated that the EKDS were very effective in reducing both the two horizontal directional seismic responses by just using smaller number of exterior-installed damping system when compared to the traditional one-directional inter-story installed damping systems.

Tensile Behavior of Concrete-Filled Square Steel Tubular Column-Beam Flange Connections with Stiffeners (강관 보강형 충전 각형강관 기둥-보 플랜지 접합부의 인장거동에 관한 실험적 연구)

  • Yoo, Yeong Chan;Kang, Hyun Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The purpose of this study is to examine the utility of concretefilled steel tubular column to H-beam connections with tubular stiffener. As a preliminary step. a tensile experiment was undertaken to scrutinize characteristics of the structural behavior that take place between beam flanges and column with tubular stiffener. A total of 4 types of experimental settings were developed as tabular stiffeners are made up 9, 18, and 27 mm of thickness and 50 and 80 mm of height respetively Along with the overall load subsequently the degree of displacement and strain were recorded. Based on the yield line theory results of this of this study were evaluated and further critically reviewed the applicability of the strength formula. This study found that collapse mechanism was emerged on the beam flange as reinforcing tabular stiffeners Complementary studies of this sort, including numerical analyses should be undertaken in order to develope specific design critera.

  • PDF

DFMT Electromagentic Transducer for Implantable Middle Ear Hearing Aid (이식형 인공중이 시스템을 위한 차동 플로팅매스형 전자 튜랜스듀서)

  • 송병섭;박재훈;윤영호;배상곤;채승표;김명남;이상흔;이건일;조진호
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.5
    • /
    • pp.625-632
    • /
    • 1999
  • 이식형 인공중이에 사용되는 전자트랜스듀서는 압전형 트랜스듀서에 비해 음향특성은 좋으나 부피가 크고 효율이 낮으며 수술시 정밀한 코일-자석 간격 조정이 필요하며, 최근 제안된 FMT 트랜스듀서는 외부 자장의 변화에 민감하다는 문제점이 지적되고 있다. 본 논문에서는 코일-자석 간격조정이 필요 없고 외부자장에 영향을 받지 않는 차동 플로팅메스형 전자 트랜스듀서를 제안하였다. 제안된 방식은 2개의 소형 자석을 같은 극끼리 접합함으로써 외부자장에 대해 영향을 받지 않고 효율이 높은 등의 장점을 가진다. 제안된 트랜스듀서의 진동력 및 효율에 관한 정량적인 해석을 하였으며 기존의 트랜스듀서와 비교분석을 행하였다. 그리고 공급전류에 대해 발생되는 진동력의 크기를 계산함으로서 실제 이식형 인공중이의 제작에 필요한 객관적인 설계데이타를 제시하였다. 한편, 시험 제작된 트랜스듀서의 해석결과 제안한 트랜스듀서는 기존의 FMT 트랜스듀서보다도 효율이 1.5배 정도의 향상됨을 보였으며 무부하시험 및 사체의 이소골 진동실험을 통하여 적절한 진동을 효과적으로 이소골에 전달할 수 있음을 보였다.

  • PDF

Seismic Behaviour of Exterior Joints in Post-Tensioned Flat Plate Systems (포스트 텐션 플랫 플레이트 외부 접합부의 내진 거동)

  • Han, Sang-Whan;Kee, Seong-Hoon;Kang, Tomas H.K.;Cho, Jong;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.595-602
    • /
    • 2006
  • An experimental study was conducted to investigate seismic behaviour of post-tensioned(PT) exterior slab-column connections used for the purpose to resist gravity loads only. For these, 2/3-scale, two PT post-tensioned exterior connections with two different tendon arrangement patterns and one conventional reinforced concrete(RC) exterior connection was tested under quasi-static, uni-directional reversed cyclic loading. During the lateral testing, gravity forces transferred to the column were kept constant to closely simulate a moment to shear ratio of a real building. One of the objectives of this study was to assess the necessity and/or the quantity of bottom bonded reinforcement needed to resist moment reversal which would occur under significant inelastic deformations of the adjacent lateral force resisting systems. The ACI 318 and 352 provisions for structural integrity were applied to provide the bottom reinforcement passing through the column for the specimens. Prior test results were also collected to conduct comparative studies for some design parameters such as the tendon arrangement pattern, the effect of post-tensioning forces and the use of bottom bonded reinforcement. Consequently, the impact of tendon arrangement on the seismic performance of the PT connection, that is lateral drift capacity and ductility, dissipated energy and failure mechanism, was considerable. Moreover, test results showed that the amount of bottom reinforcement specified by ACI 352. 1R-89 was sufficient for resisting positive moments arising from moment reversal under reversed cyclic loads. Shear strength of the tested specimens was more accurately predicted by the shear strength equation(ACI 318) considering the average compressive stress over the concrete($f_{pc}$) due to post-tensioning forces than that without considering $f_{pc}$.

Improvement and Evaluation of Seismic Performance of Reinforced Concrete Exterior Beam-Column Joints Retrofitting with Fiber Reinforced Polymer Sheets and Embedded CFRP Rods (섬유시트와 매입형 CFRP Rod를 보강한 R/C 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Ha, Young-Joo;Kang, Hyun-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.151-159
    • /
    • 2015
  • In this study, experimental research was carried out to evaluate and improve the seismic performance of reinforced concrete beam-column joint regions using strengthening materials (CFRP sheet, AFRP sheet, embedded CFRP rod) in existing reinforced concrete structure. Therefore it was constructed and tested seven specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of existing reinforced concrete structure, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and confinement of retrofitting materials during testing. Specimens LBCJ-CRUS, designed by the retrofitting of CFRP Rod and CFRP Sheet in reinforecd beam-column joint regions were increased its maximum load carrying capacity by 1.54 times and its energy dissipation capacity by 2.36 times in comparison with standard specimen LBCJ for a displacement ductility of 4 and 7. And Specimens LBCJ-CS, LBCJ-AF series were increased its energy dissipation capacity each by 2.04~2.34, 1.63~3.02 times in comparison with standard specimen LBCJ for a displacement ductility of 7.