• Title/Summary/Keyword: 외벽재

Search Result 63, Processing Time 0.045 seconds

외벽재(1)

  • 전국보일러설비협회
    • 보일러설비
    • /
    • s.131
    • /
    • pp.130-138
    • /
    • 2004
  • PDF

외벽재(2)

  • 전국보일러설비협회
    • 보일러설비
    • /
    • s.133
    • /
    • pp.136-143
    • /
    • 2005
  • PDF

An Experimental Study on Fire Spreading External Wall of Buildings Using Dry Construction Method (건식공법을 이용한 건축물의 외벽 화재 확산의 실험적 연구)

  • Park, Jung-Woo;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.75-85
    • /
    • 2018
  • The Grenpell tower fire in England in June of 2016 is a representative example of damage caused by a vertical fire spreading through external insulation. Organic insulation materials, which are widely used in external insulation, have the disadvantage that they have good insulation performance but are vulnerable to fire. Aluminum composite panels are used as exterior wall finishing materials, and plastics used in aluminum are regarded as the cause of vertical fire spread. Due to the steel frame used to secure the aluminum composite panel to the outer wall, a cavity is formed between the outer wall and outer wall finish. When a fire occurs on the outer wall, the flammable outer wall as well as the flame generated from the heat-insulating material spreads vertically through the cavity, resulting in damage to people and property. In Korea, material unit performance tests are carried out by the Ministry of Land, Infrastructure and Transport notice 2015 - 744. However, in the UK, the BS 8414 test is used to measure the vertical fire spreading time on the outer wall in real scale fire tests. In this study, the risk of external wall fire was evaluated in an actual fire by conducting a real scale wall fire test (BS 8414), which was carried out in Europe, using aluminum composite panels of semi-noncombustible materials suitable for current domestic standards. The purpose of this study was to confirm the limitations of material unit evaluation of finishing materials and to confirm the necessity of introducing a system to prevent the spread of outer wall fire through an actual scale fire test.

Research for the Configuration of the Outside Sprinkler System (외벽방호 스프링클러시스템 구성에 관한 연구)

  • Min, Se-Hong;Yun, Jung-Eun;Sun, Ju-Seok;Jeong, Sang-Ho;Chea, Chang-Hun;Kim, Suck-Jun
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.102-112
    • /
    • 2012
  • In this research, configulation of outside sprinkler system the prevention and postponement of vertical diffusion of blaze was studied prior to this study, vertical diffusion protecting sprinkler head has been developed and the sprinkler system was applied with discharge pressure of 0.05 MPa and flow of 60 l/min witch is stated in NFPA13's Exposure Protection Sprinkler Systems. Through the system design, we applied the system to the sample building and we made pertinent system to work manually and automatically linked to a fire alarm system. Also, we conducted a real-size mock up test verify the cooling effect of the outer wall and the postponement effect of the flame.

Experiment on Coolability through External Reactor Vessel Cooling according to RPV Insulation Design (국내원전 단열재 설계특성에 따른 외벽냉각 효과검증 실험)

  • Kang, Kyoung-Ho;Park, Rae-Joon;Kim, Snag-Baik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1578-1583
    • /
    • 2003
  • LAVA-ERVC experiments have been performed to investigate the effect of insulation design features on the coolability in case of the external reactor vessel cooling (ERVC). All the 4 tests have been performed using Alumina iron thermite melt as a corium simulant. Due to the limited steam venting through the insulation, steam binding occurred inside the annulus in the KSNP case simulation. On the contrary, in the tests which were performed for simulating the APR1400 insulation design, sufficient water ingression and steam venting through the insulation lead to effective cool down of the vessel characterized by nucleate boiling. It could be found from the experimental results that modification of the insulation design allowing sufficient ventilation could increase the positive effects of the external reactor vessel cooling.

  • PDF

An Experimental Study on the Two-Phase Natural Circulation Flow through an Annular Gap between Reactor Vessel and Insulation under External Vessel Cooling (원자로용기 외벽냉각시 용기와 단열재 사이의 자연순환 이상유동에 관한 실험적 연구)

  • Ha, Kwang-Soon;Park, Rae-Joon;Kim, Hwan-Yeol;Kim, Sang-Baik;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1897-1902
    • /
    • 2003
  • An 1/21.6 scaled experimental facility was prepared utilizing the results of a scaling analysis to simulate the APRI400 reactor and insulation system. The behaviors of the boiling-induced two-phase natural circulation flow in the insulation gap were observed, and the liquid mass flow rates driven by natural circulation loop were measured by varying the wall heat flux, upper exit slot area and configuration. And non-heating experiments have also been performed and discussed to certify the hydraulic similarity of the heating experiments by injecting air equivalent to the steam generated in the heating experimental condition.

  • PDF

A Non-Heating Small-Sclaed Experimental Study on the Two-Phase Natural Circulation Flow through an Annular Gap between Reactor Vessel and Insulation (소형 비가열 실험을 이용한 원자로용기 외벽냉각시 용기와 단열재 사이의 자연순환 이상유동에 관한 연구)

  • Ha, Kwang-Soon;Park, Rae-Joon;Cho, Young-Rho;Kim, Sang-Baik;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1927-1932
    • /
    • 2004
  • A 1/21.6 scaled non-heating experimental facility was prepared utilizing the results of a scaling analysis to simulate the APR1400 reactor and insulation system. The behaviors of the air bubble-induced two-phase natural circulation flow in the insulation gap were observed, and the liquid mass flow rates driven by natural circulation loop were measured by varying the injected air flow rate and distribution. As the injected air flow rates increased, the natural circulation flow rates also increased. Both the longitudinal and the latitudinal distributions of the injected air affected the natural circulation flow rates, especially, the longitudinal effect is more larger.

  • PDF

A Preliminary Assessment on ERVC Performance Depending on Insulation Conditions (단열재 조건에 따른 원자로용기 외벽냉각 성능 예비분석)

  • Dong-Hyeon Choi;Yoon-Suk Chang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • Lots of researches have been conducted on in-vessel retention (IVR) to prevent or mitigate severe accident in nuclear power plants. Various methodologies were proposed and the external reactor vessel cooling was selected as a part of promising IVR strategy. In this study, the strategy is strengthened by enhancing the natural circulation performance through the adoption of insulation in the reactor cavity. A thermal analysis was carried out based on an assumed accident scenario and its results were used as boundary conditions for subsequent seven flow analysis cases. By comparing the natural circulation performance, effects of annular gaps and insulation shapes on the mass flow rate and flow velocity were quantified. The improvement in cooling performance can be reflected in actual design via detailed assessment.

A Study on the Elastic Restoration Characteristics According to Environmental Resistance Condition of Structural Sealing Finishing Materials (구조용 실링마감재의 내환경 조건에 따른 탄성복원 특성 연구)

  • Jang, Pil-Sung;Kang, Dong-Won;Hong, Soon-Gu;Kim, Young-Geun;Kim, Sung-Rae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.6-12
    • /
    • 2018
  • Recently, The use of the curtain wall method is increasing in construction. The curtain wall construction is widely applied to the exterior wall of the building for shortening construction period and economical efficiency. However, the replacement of deterioration of the weather resistance and structural behavior of the sealing material connecting the curtain wall method and the glass frame is necessary for introduction of the stable curtain wall method and quality improvement in accordance with KS F 4910 standard. In this study, the elastic restoring force test was performed in the external environment. In this study, the deterioration of the sealant was evaluated for structural sealants. In Korea, studies on the variable displacement behavior of structural sealants are lacked. In this study, the reproduced results in laboratory conditions are compared with the deteriorating conditions exposed to the external environment, and they are reflected in the design of sealing materials in the future. According to the results of the study, it was confirmed that the existing structure sealant meets the quality standard of KS F 4910, but in the conditions performed in this study, adhesion failure of the specimen and cracking of the surface occurred. Especially, in the weather resistance test, it is necessary to evaluate the long-term durability performance of the structural sealant used in the curtain wall method by checking the insoluble state of all the test pieces. Therefore, in order to apply a conventional structural sealant to the site, it is necessary to introduce another durability performance evaluation.