• Title/Summary/Keyword: 외면겹치기 동시경화조인트

Search Result 2, Processing Time 0.015 seconds

Effects of Corrosion Behavior on Failure of Co-Cured Single Lap Joints Subjected to Cyclic Tensile Loads (피로하중이 가해지는 외면겹치기 동시경화조인트의 파괴에 미치는 부식의 영향)

  • Shin, Kum-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.315-321
    • /
    • 2010
  • Co-cured single lap joints under cyclic tensile loads fail initially at the tip of the interface corner between the two adherents. The failure mechanism is complex because it is related to corrosion fatigue. Corrosion behavior at the interface affects the failure of the joints because corrosion deteriorates fatigue resistance. In this study, we clarified the cause of interfacial corrosion in co-cured single lap joints under cyclic tensile loads. The failure mechanism was also analyzed by observing the failed surfaces of specimens and the stress distribution along the interface. The surface roughness at the interface and the stacking sequence of the composite adherent were examined to investigate their effects on failure of the joint.

Tensile load bearing capacities of co-cured single and double lap joints (외면 및 양면겹치기 동시경화조인트의 인장하중 전달용량에 관한 연구)

  • 신금철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.95-98
    • /
    • 2001
  • Co-cured joining method is an efficient joining technique because both curing and bonding processes for the composite structures can be achieved simultaneously. It requires neither an adhesive nor a surface treatment of the composite adherend because the excess resin, which is extracted from composite materials during consolidation, accomplishes the co-cured joining process. In this paper, we considered three bond parameters, affecting tensile load bearing capacity of the co-cured single and double lap joints. Filially, we nave presented optimal bonding conditions for co-cured single and double lap joints with steel and composite adherends under tensile loads.

  • PDF