• Title/Summary/Keyword: 외곽 거푸집

Search Result 3, Processing Time 0.015 seconds

An Experimental Study on the Mechanical Properties of Ductile Outline Form and Fire Resistance of High Strength RC Column (고인성 외곽 거푸집의 역학성능 및 이를 활용한 고강도 RC기둥의 내화성능에 관한 실험적 연구)

  • Rho, Hyoung-Nam;Kim, Jae-Hwan;Kim, Yong-Ro;Kim, Wook-Jong;Kwon, Young-Jin;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.199-203
    • /
    • 2008
  • With recent trend in domestic and global market requiring architectures' conversion into skyscrapers seasoned with the features of landmarks, structural problems in relation with explosive spatting during fire emergencies are arising as controversial issues. Accordingly, many productive researches have been made in relation to the reinforcement techniques for improving fire resistance and the number of applications in the field is gradually increasing. In this study, a ductile outline form using ECC (Engineered Cementations Composites) was made with improvements on the structure and fire resistance to examine its applicability. Also, currently in Japan, the number of studies and applications is increasing focusing on reduction of construction time and improvement of workability with application of Half-PCa method. However, using such method of construction, large structural members decrease the utilization of space and architecture-wise, there is a disadvantage of the weight increase. Therefore, in such context, it would be worth reducing the weight of the structural members by reducing the size using ECC. In addition, its excellent pseudo strain-hardening due to fiber may have great effects on seismic designs. In the mean time, this study planned 3 equal conditions for mix water, PVA fiber and additives excluding binder and refractory to evaluate the mechanical properties of resistance against pressure and internal force. Finally, an evaluation was executed on the fire resistance of the newly made ductile outline form. As a result, from ECC-I to ECC-III, all showed excellent mechanical properties due to pseudo strain-hardening and in the fire resistance test conducted with ISO 834 heating curve, most of them tended to be in the range of the reference temperature (538℃-180min), so there was no occurrence of any explosive spatting.

  • PDF

Cyclic Lateral Loading Test for Cast-In-Place Concrete-Filled Hollow PC Columns Using Permanent Inner form (영구 내부거푸집을 이용한 현장타설 콘크리트 채움중공 PC기둥의 반복횡가력실험)

  • Lee, Ho-Jun;Park, Hong-Gun;Kim, Chang-Soo;Hwang, Hyeon-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.129-139
    • /
    • 2016
  • Cast-in-place concrete-filled hollow PC (HPC) columns are used to reduce lifting load of heavy-weight PC columns and to improve the structural integrity of joints. In the present study, a new type of HPC column was proposed to improve the productivity and structural integrity of the concrete. To form the hollow PC columns, a permanent inner form was prefabricated using structural deck plates and penetrated lateral bars. Half-scale specimens of four HPC columns were tested under combined axial compression and lateral cyclic loading to evaluate the seismic resistance. In the design of test specimens, various parameters such as the spacing of lateral re-bars, the use of steel fiber, and the thickness of PC cover were considered. The test results showed that the proposed HPC columns generally exhibited satisfactory load-carrying capacity and deformation capacity without brittle failure of PC. If closely spaced hoops or fiber reinforcements are used for PC, the deformation capacity can be improved further by restraining PC spalling.

An Experimental Study on the Mechanical and Fire Resistance Properties of ECC Fire Resistance Panel (ECC내화패널의 역학 및 내화특성에 관한 실험적 연구)

  • Lee, Sang-Soo;Kang, Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • This study was based on an experiment that examines the manufacture and performance of fiber-reinforced cement composite panels. The conclusions were drawn after testing the mechanical properties and durability characteristics of fiber-reinforced mortar, and the mechanical properties and fire resistance of ECC fire resistant column panels. It was found that the fluidity of CEL fiber was lower than that of PVA and NY fiber. The amount of air increased slightly as the combination of fibers caused the number of fine pores to increase. It was found that the mechanical performance and deformability of high strength concrete could be improved through the confinement effect of ECC fire resistant column panels. Through continuous studies on the manufacturing and field construction methods of fire resistant column panels, a new PC method that eliminates weakness in the existing processes may be developed for skyscrapers.