• Title/Summary/Keyword: 완화 현상

Search Result 648, Processing Time 0.033 seconds

The Structural, Electrical, and Optical Properties of ZnO Ultra-thin Films Dependent on Film Thickness (ZnO 초박막의 두께 변화에 따른 구조적, 전기적, 광학적 특성 변화 연구)

  • Kang, Kyung-Mun;Wang, Yue;Kim, Minjae;Lee, Hong-Sub;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.15-21
    • /
    • 2019
  • We investigated the structural, electrical and optical properties of zinc oxide (ZnO) ultra-thin films grown at $150^{\circ}C$ by atomic layer deposition (ALD). Diethylzinc and deionized water were used as metal precursors and reactants, respectively, for the deposition of ZnO thin films. The growth rate per ALD cycle was a constant 0.21 nm/cycle at $150^{\circ}C$, and samples below 50 cycles had amorphous properties due to the relatively thin thickness at the initial ALD growth stage. With the increase of the thickness from 100 cycles to 200 cycles, the crystallinity of ZnO thin films was increased and hexagonal wurtzite structure was observed. In addition, the particle size of the ZnO thin film increased with increasing number of ALD cycles. Electrical properties analysis showed that the resistivity value decreased with the increase of the thin film thickness, which is correlated with the decrease of the grain boundary concentration in the thicker ZnO thin film due to the increase of grain size and the improvement of the crystallinity. Optical characterization results showed that the band edge absorption in the near ultraviolet region (300 nm~400 nm) was increased and shifted. This phenomenon is due to the increase of the carrier concentration with the increase of the ZnO thin film thickness. This result agrees well with the decrease of the resistivity with the increase of the thin film thickness. Consequently, as the thickness of the thin film increases, the stress on the film surface is relaxed, the band gap decreases, and the crystallinity and conductivity are improved.

Development of Polymer Elastic Bump Formation Process and Bump Deformation Behavior Analysis for Flexible Semiconductor Package Assembly (유연 반도체 패키지 접속을 위한 폴리머 탄성범프 범핑 공정 개발 및 범프 변형 거동 분석)

  • Lee, Jae Hak;Song, Jun-Yeob;Kim, Seung Man;Kim, Yong Jin;Park, Ah-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.31-43
    • /
    • 2019
  • In this study, polymer elastic bumps were fabricated for the flexible electronic package flip chip bonding and the viscoelastic and viscoplastic behavior of the polymer elastic bumps according to the temperature and load were analyzed using FEM and experiments. The polymer elastic bump is easy to deform by the bonding load, and it is confirmed that the bump height flatness problem is easily compensated and the stress concentration on thin chip is reduced remarkably. We also develop a spiral cap type and spoke cap type polymer elastic bump of $200{\mu}m$ diameter to complement Au metal cap crack phenomenon caused by excessive deformation of polymer elastic bump. The proposed polymer elastic bumps could reduce stress of metal wiring during bump deformation compared to metal cap bump, which is completely covered with metal wiring because the metal wiring on these bumps is partially patterned and easily deformable pattern. The spoke cap bump shows the lowest stress concentration in the metal wiring while maintaining the low contact resistance because the contact area between bump and pad was wider than that of the spiral cap bump.

A Study on the Adequacy Evaluation of Criteria of Occupant Load Density in School Classrooms (학교 교실의 재실자밀도 기준 적정성 평가에 관한 연구)

  • Seo, Dong-Goo;Hwang, Eun-Kyoung
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.134-140
    • /
    • 2018
  • This study examined the adequacy of a school classroom's occupant load density standard to cope with the issues associated with the decreasing number of students and regional variations. Therefore, this study analyzed the occupant load density standards of kindergarten, elementary school, middle school, high school, and universities using the data open to the public by the Ministry of Education. The results revealed a high variance in the occupant load density according to the school type. The median values were 1.49, 3.45, 2.64, 2.45, and $3.41m^2/person$ for kindergarten, elementary school, middle school, high school, and universities, respectively. Although the occupant load density was higher than the current standard ($1.9m^2/person$), except for kindergarten, the present standard did not need to be improved immediately, considering the purpose of calculating the maximum occupancy. On the other hand, if improvements are made in line with other enhancements of a national education policy, it will be possible to mitigate the measure to $2.5m^2/person$ based on the survey results.

Major Outcomes and Tasks for ICH Network Activities in Central Asia : Focusing on Case Studies and Experiences from the Recent Collaborative Work in the Region (중앙아시아 무형문화유산 네트워크 활동의 성과와 미래 - 최근 사례와 경험을 중심으로 -)

  • Park, Seong-Yong
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.3
    • /
    • pp.204-219
    • /
    • 2015
  • International society, including the United Nations, has recently been making efforts to further promote a rapprochement of cultures in relation to alleviating military and political conflicts and other social clashes. In line with these efforts at the international level, there has been a growing interest on Central Asia and, in particular, on the Silk Road, which functioned as a trade route among ancient civilizations in the region and is also seen as a route that promoted cultural dialogue and exchanges. Given the amount of cross cultural dialogue and exchange, it is no surprise that intangible cultural heritage has historically been abundant and easily found in the region. However, this heritage was placed in considerable risk because heritage transmission critically weakened for seventy years under Soviet rule. Fortunately, since independence, there has been increasing interest in restoring community identity and reviving intangible heritage. Nevertheless, in spite of this interest, a lack of policies and cultural support in each country has made heritage safeguarding difficult. In this paper, I analyze the various phenomena that took place after the concept and international trends on ICH were introduced and speak about the experiences and outcomes obtained from collaborative network projects by ICHCAP and the Central Asian countries over the last six year. In addition, I would like take this opportunity to discuss how we can understand and develop collaboration in the intangible heritage field in Central Asia in a long-term perspective.

A Discussion on the Deep Horizontal Drillhole Disposal Concept of Spent Nuclear Fuel in Korea (사용후핵연료의 심부수평시추공처분 개념에 관한 소고)

  • Kim, Kyungsu;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.355-362
    • /
    • 2019
  • This technical note introduces a newly-proposed concept of deep horizontal drillhole disposal of spent nuclear fuel, and considers how it can be applied in the Korean environment. This disposal concept, in which high-level radioactive waste is disposed in deep horizontal drillholes installed with directional drilling technique, is expected to have great advantages over the existing deep mined repository concept in economics and safety. Since this concept is still at the idea level, however, it is necessary for worldwide expert groups to demonstrate its safety and performance. In addition, the development of guidelines by the regulatory body should be supported. The Korean circumstances, which include a narrow territory and a high population density, as well as the amount of spent nuclear fuel, make the NIMBY (Not In My Back Yard) phenomenon very strong and the siting conditions difficult. Under these conditions, if the disposal section of deep horizontal drillhole concept can be located at the continental shelf, with a stable environment, rather than in a coastal land area, it is expected to alleviate the psychological anxiety of the local community and stakeholders. Moreover, even when constructing a centralized deep mined repository in the future, it is necessary to consider locating the repository in the continental shelf.

Experimental Study on Reducing Effect for Surface Temperature of Recycled Synthetic-Resin Permeable Block (재생 합성수지 투수블록의 표면온도 저감효과에 관한 실험적 연구)

  • Lee, Chul-Hee;Lee, Arum;Shin, Eun-Chul;Ryu, Byung-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.79-89
    • /
    • 2019
  • The field measurement and laboratory experiment were conducted to investigate the effect of reducing the surface temperature of the functional aspect of the heat island phenomenon of the permeable block which is made the recycled synthetic resin rather than the existing concrete permeable block. Field measurement was taken for 3 days in consideration of dry condition and wet condition and laboratory experiment was divided into dry condition, rainfall simulating condition, and wetting condition. The variations of temperature and the evaporation rate of water moisture content after experiment were confirmed. As a result of field measurement, it is confirmed that the surface temperature decreases due to the difference in albedo of the pore block surface rather than the cooling effect due to the latent heat of vaporization. The evaporation of moisture in a dry state where drought persisted or a certain level of moisture was not maintained in the surface layer. As a result of laboratory experiment, resin permeable block gives higher surface temperature when it is dry condition than concrete permeable block, but the evaporation of water in the pore is kept constant by capillary force in rainfall simulation condition, and higher temperature reduction rate. As a result of measuring the evaporation rate after laboratory experiment, it is confirmed that the effect of reducing temperature is increased as the evaporation rate of water is higher. Based on these results, correlation formula for evaporation rate and temperature reduction rate is derived.

Urban Street Planting Scenarios Simulation for Micro-scale Urban Heat Island Effect Mitigation in Seoul (미시적 열섬현상 저감을 위한 도시 가로수 식재 시나리오별 분석 - 서울시를 대상으로 -)

  • Kwon, You Jin;Lee, Dong Kun;Ahn, Saekyul
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.1
    • /
    • pp.23-34
    • /
    • 2019
  • Global warming becomes a serious issue that poses subsidiary issues like a sea level rise or a capricious climate over the world. Because of severe heat-wave of the summer in Korea in 2016, a big attention has been focused on urban heat island since then. Not just about heat-wave itself, many researches have been concentrated on how to adapt in this trendy warming climate and weather in a small scope. A big part of existing studies is mitigating "Urban Heat Island effect" and that is because of huge impervious surface in urban area where highly populated areas do diverse activities. It is a serious problem that this thermal context has a high possibility causing mortality by heat vulnerability. However, there have been many articles of a green infrastructures' cooling impact in summer. This research pays attention to measure cooling effect of a street planting considering urban canyon and type of green infrastructures in neighborhood scale. This quantitative approach was proceeded by ENVI-met simulation with a spatial scope of a commercial block in Seoul, Korea. We found the dense double-row planting is more sensitive to change in temperature than that of the single-row. Among the double-row planting scenarios, shrubs which have narrow space between the plant and the land surface were found to store heat inside during the daytime and prevent emitting heat so as to have a higher temperature at night. The quantifying an amount of vegetated spaces' cooling effect research is expected to contribute to a study of the cost and benefit for the planting scenarios' assessment in the future.

A Case Study on the Community Space Design of Urban Symbiosis -Focusing on the Beijing Hutong Community- (도시 공생의 커뮤니티 공간디자인 사례 연구 -베이징 후통(胡同) 커뮤니티를 중심으로-)

  • Wei, Yi-Lin;Hong, Kwan-Seon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.274-285
    • /
    • 2021
  • Nowadays, cities are developing rapidly, and the development of old and new towns are not balanced. The decline of old towns has promoted the development of new towns, leading to serious decline of old towns, population loss, and environmental degradation. This research hopes to alleviate the decline of the old town, try to find a balance between the old and the new towns, and use the development concept of "symbiosis" to develop the old and new towns together. The new and old towns will develop together, so that the old towns will be rejuvenated. Research method is to conduct preliminary research and theoretical investigation on the two parts of "symbiosis" and community space, sort out the space composition and characteristic elements, propose the concept of symbiosis community, and conduct case analysis. Since 2016, China has implemented the 'Symbiosis Institute' renewal project in Beijing. It selected the case of the post-2016 alley community in Dongcheng and Xicheng District, Beijing for analysis, and conducted a questionnaire survey to finally obtain the results of the analysis. According to the choice of spatial composition and characteristics in each case, and at the same time refer to the results of the questionnaire, sort out the results of importance. In the future design, we hope to use the above design strategy as a reference to realize the city's "symbiotic" development.

Photobiomodulation-based Skin-care Effect of Organic Light-emitting Diodes (유기발광다이오드를 이용한 Photobiomodulation 기반 스킨케어 효과)

  • Kim, Hongbin;Jeong, Hyejung;Jin, Seokgeun;Lee, Byeongil;Ahn, Jae Sung
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.5
    • /
    • pp.235-243
    • /
    • 2021
  • Photobiomodulation (PBM)-based therapy, which uses a phenomenon in which a light source of a specific wavelength band promotes ATP production in mitochondria, has attracted much attention in the fields of biology and medicine because of its effects on wound healing, inflammation reduction, and pain relief. Research on PBM-based therapy has mainly used lasers and light-emitting diodes (LEDs) as light sources and, despite the advantages of organic light-emitting diodes (OLEDs), there have been only a few cases where OLEDs were used in PBM-based therapy. In this research, the skin-care effect of PBM was analyzed using red (λ = 620 nm), green (λ = 525 nm), and blue (λ = 455 nm) OLED lighting modules, and was compared to the PBM effect of LEDs. We demonstrated the PBM-based skin-care effect of the red, green, blue OLED lighting modules by measuring the increase in the amount of collagen type-1 synthesis, the inhibition of melanin synthesis, and the suppression of nitric oxide generation, respectively.

Linearly Polarized 1-kW 20/400-㎛ Yb-doped Fiber Laser with 10-GHz Linewidth (선편광된 10 GHz 선폭의 1 kW급 20/400-㎛ 이터븀 첨가 광섬유 레이저)

  • Jung, Yeji;Jung, Minwan;Lee, Kangin;Kim, Taewoo;Kim, Jae-Ihn;Lee, Yongsoo;Cho, Joonyong
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.3
    • /
    • pp.120-125
    • /
    • 2021
  • We have developed a linearly polarized high-power Yb-doped fiber laser in the master oscillator power amplifier (MOPA) scheme for efficient spectral beam combining. We modulated the phase of the seed laser by pseudo-random binary sequence (PRBS), with the bit length optimized to suppress stimulated Brillouin scattering (SBS), and subsequently amplified seed power in a 3-stage amplifier system. We have constructed by coiling the polarization-maintaining (PM) Yb-doped fiber, with core and cladding diameters of 20 ㎛ and 400 ㎛ respectively, to a diameter of 9-12 cm for suppression of the mode instability (MI). Finally, we obtained an output power of 1.004 kW with a slope efficiency of 83.7% in the main amplification stage. The beam quality factor M2 and the polarization extinction ratio (PER) were measured to be 1.12 and 21.5 dB respectively. Furthermore, the peak-intensity difference between the Rayleigh signal and SBS signal was observed to be 2.36 dB in the backward spectra, indicating that SBS is successfully suppressed. In addition, it can be expected that the MI does not occur because not only there is no decrease in slope efficiency, but also the beam quality for each amplified output is maintained.