• Title/Summary/Keyword: 와전류형

Search Result 6, Processing Time 0.02 seconds

Optimal torque control of noncontact type eddy current brake system (비접촉식 와전류형 제동 장치의 최적 토오크 제어)

  • 이갑진;박기환;류제하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.261-264
    • /
    • 1997
  • A contactless eddy current type braking system is developed to take advantages of the recent brake system which uses hydraulic force can show high efficiency in a certain velocity region, but not in a high velocity region, and has initial response delay time and pressure build-up time which make stopping distance longer. These are the limits of mechanical brake system of a contact type, which makes a concept brake system required. So, in this paper, the contactless brake system .of a inductive current type is chosen instead of hydraulic brake system. This brake system can be used almost forever for being no wear and contributed to lightening weight of a vehicle. Besides, the contactless brake system can be used as that of electric or solar car with anti-lock brake system. The analysis of induced electromotive force and braking torque obtained with theoretical approximate model, the design of a braking system and a nonlinear controller, and the results of simulation of the ABS, experiment are included.

  • PDF

Analysis of Eddy Current Brake system (와전류형 브레이크의 특성해석)

  • Jang, S.M.;Cha, S.D.;Lee, S.H.;Jeong, S.S.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.889-891
    • /
    • 2001
  • The eddy current brake system is one of important application of eddy current. It is adequate to obtain safe braking force in high speed transportation system and electric vehicle etc. There is a variety of configurations and materials used in manufacturing of eddy current brakes. This paper proposes the eddy current brakes which uses permanent magnet. The dynamic characteristic has been analyzed to FEM and compared with measured data.

  • PDF

The Organization of Rotational Accuracy Measurement System of NC Lathe Spindle (NC 선반 주축의 회전정도 측정 시스템의 구성)

  • Kim, Young-Seuk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.21-26
    • /
    • 2005
  • It is important to measure the rotational accuracy of NC lathe spindle as it affects to the qualities of all machines machined by the NC lathe using in industries. The bad rotational accuracy of NC lathe spindle are caused mainly by wearness of the spindle in using and quality of spindle when machining and using low level bearings. It occurs especially in case of NC lathes because the cutting force acting to work-piece act on one side to the spindle not to both sides symmetrically. Therefore in this study, constructing experimental appratus for measuring of rotational accuracy by using eddy current type gap sensors, converters, screw terminal, data acquisition board inserted in computer and software f3r data acquisition, DT VEE ver. 5.0 and then error data acquired in the rotational accuracy test of NC lathe spindle are analysed in plots and statistical treatments.

Measuring of Rotational Accuracy of Lathe Spindle (선반 주축의 회전운동 정도 측정)

  • Kim, Young-Seuk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.43-48
    • /
    • 2007
  • It is important to measure the rotational accuracy of lathe spindle as it affects to the qualities of all machines machined by the lathe using in industries. The bad rotational accuracy of lathe spindle are caused mainly by wearness of the spindle in using and quality of spindle when machining and using low level bearings. It occurs especially in case of lathes because the cutting force acting to work-piece act on one side to the spindle not to both sides symmetrically. Therefore in this study, constructing experimental apparatus for measuring of rotational accuracy by using eddy current type gap sensors AEC5706PS and sensors, s-06LN, data acquisition board DT9834(USB type) and software for data acquisition, DT Measure Foundry ver. 4.0.7 etc., error data acquired in the rotational accuracy test of lathe spindle are analysed in plots and statistical treatments.

Test method for Motor/controller for Electric Vehicle (전기자동차용 전동기/제어기의 시험 방법)

  • 오성철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.328-335
    • /
    • 2003
  • Test procedure for Electric Vehicle(EV) motor/controller has been developed. Most of existing standards mainly focus on minimum requirements for safe operation. However, detailed test procedures are not covered in the standard. In order to develop test items, methods and procedures which should be strictly applied to EV motor and controller, existing standards have been reviewed by the expert group in Korea. Based on their feedback, standard test procedure was proposed. Test procedure especially for combined motor and controller has been proposed. As a load lot the tested motor, M-G set, eddy current type engine dynamo and AC dynamo were used. Test procedures for the driving cycle test and regeneration test were proposed.

Robust Control of an Anti-Lock Eddy Current Type Brake System (잠김 방지 기능을 가지는 비접촉식 와전류형 제동장치의 견실제어)

  • 이갑진;박기환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.525-533
    • /
    • 1998
  • A conventional contact type brake system which uses a hydraulic system has mny Problems such as time delay response due to pressure build-up, brake pad wear due to contact movement, bulky size, and low braking performance in high speed region. As vehicle speed increases, a more powerful brake system is required to ensure vehicle safety and reliability. In this work, a contactless brake system of an eddy current type is proposed to overcome problems. Optimal torque control which minimizes a braking distance is investigated with a scaled-down model of an eddy current type brake. It is possible to realize optimal torque control when a maximum friction coefficient (or desired slip ratio) corresponding to road condition is maintained. Braking force analysis for a scaled-down model is done theoretically and experimentally compensated. To accomplish optimal torque control of an eddy current type brake system, a sliding mode control technique which is, one of the robust nonlinear control technique is developed. Robustness of the sliding mode controller is verified by investigating the braking performance when friction coefficient is varied. Simulation and experimental results will be presented to show that it has superior performance compared to the conventional method.

  • PDF