• 제목/요약/키워드: 와일드 붓스트랩

검색결과 2건 처리시간 0.015초

벡터자기회귀모형과 오차수정모형의 자기상관성을 위한 와일드 붓스트랩 Ljung-Box 검정 (Wild bootstrap Ljung-Box test for autocorrelation in vector autoregressive and error correction models)

  • 이명우;이태욱
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.61-73
    • /
    • 2016
  • 본 논문에서는 다변량 시계열 모형 진단을 위해 잔차의 자기상관성 유무를 확인하기 위한 와일드 붓스트랩(wild bootstrap) Ljung-Box(LB) 검정통계량을 연구하였다. 일반적으로 LB 검정은 오차가 서로 독립이며 동일한 분포를 따른다는 IID 가정 하에 유도되는 점근적 카이제곱 분포를 이용한다. 한편 금융시계열 자료는 분산에 조건부 이분산성이 존재하기 때문에 오차의 IID 가정을 만족시키지 못하며 이에 따라 점근적 분포를 이용한 LB 검정은 제1종의 오류를 만족시키지 못하게 된다. 이를 극복하기 위해 와일드 붓스트랩을 이용한 LB 검정법을 제안하고 그 성질을 연구하고자 한다. 벡터자기회귀 모형과 벡터오차수정 모형 등의 다양한 다변량 시계열 모형을 이용하여 모의실험을 실시하는 한편, 코스피 200지수와 지수선물 자료를 이용한 실증분석을 통해 와일드 붓스트랩을 이용한 LB 검정법이 조건부 이분산성의 부정적인 영향을 효과적으로 제거할 수 있음을 입증하였다.

MOSUM 성근 프로젝션을 이용한 고차원 시계열의 변화점 추정 (High-dimensional change point detection using MOSUM-based sparse projection)

  • 김문정;백창룡
    • 응용통계연구
    • /
    • 제35권1호
    • /
    • pp.63-75
    • /
    • 2022
  • 본 논문은 Wang과 Samworth (2018)가 제안한 성근 프로젝션 방법을 개선하여 MOSUM을 이용하여 고차원의 시계열데이터에 존재하는 다중 평균 변화점을 추정하는 방법에 대해서 제안한다. 제안한 방법은 국소방법으로 다중 변화점을 동시에 찾을 수 있어 순차적 오류를 최소화 할 뿐만 아니라 평균이 상쇄되는 경우에도 변화점을 추정하는 장점을 지니고 있다. 또한 데이터 의존적인 방법으로 블록 와일드 붓스트랩 방법을 활용하여 임계점을 찾는 방법을 제안한다. 모의 실험을 통해 제안한 방법이 좋은 성능을 보임을 확인하였으며 S&P 500 지수를 구성하는 개별 기업들의 금융 자료에 적용하여 최근 6년간 네 번의 변화점을 찾았다.