• Title/Summary/Keyword: 와이블 응력모델

Search Result 6, Processing Time 0.017 seconds

Estimation of Brittle Fracture Behavior of SA508 Carbon Steel by Considering Temperature Dependence of Damage Model (손상모델의 온도의존성을 고려한 SA508 탄소강의 취성파괴 평가)

  • Choi, Shin-Beom;Jeong, Jae-Uk;Choi, Jae-Boong;Chang, Yoon-Suk;Ko, Han-Ok;Kim, Min-Chul;Lee, Bong-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.513-521
    • /
    • 2012
  • The aim of this study was to determine the brittle fracture behavior of reactor pressure vessel steel by considering the temperature dependence of a damage model. A multi-island genetic algorithm was linked to a Weibull stress model, which is the model typically used for brittle fracture evaluation, to improve the calibration procedure. The improved calibration procedure and fracture toughness test data for SA508 carbon steel at the temperatures $-60^{\circ}C$, $-80^{\circ}C$, and $-100^{\circ}C$ were used to decide the damage parameters required for the brittle fracture evaluation. The model was found to show temperature dependence, similar to the case of NUREG/CR-6930. Finally, on the basis of the quantification of the difference between 2- and 3-parameter Weibull stress models, an engineering equation that can help obtain more realistic fracture behavior by using the simpler 2-parameter Weibull stress model was proposed.

A Study on Statistical Characteristics of Fatigue Life of Carbon Fiber Composite (탄소섬유 복합재 피로수명의 통계적 특성 연구)

  • Joo, Young-Sik;Lee, Won-Jun;Seo, Bo-Hwi;Lim, Seung-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.35-40
    • /
    • 2019
  • The objective of this paper is to identify the fatigue properties of carbon-fiber composite which is widely applied for the development of aircraft structures and obtain data for full-scale fatigue test. The durability and damage tolerance evaluation of composite structures is achieved by fatigue tests and parameters such as fatigue life factor and load enhancement factor. The specimens are made with carbon-fiber/epoxy UD tape and fabric prepreg. Fatigue tests are performed with several stress ratios and lay-up patterns. The Weibull shape parameters are analyzed by Sendeckyj model and individual fatigue lives with Weibull distribution. And the fatigue life factor and load enhancement factor considering reliability are evaluated.

A Stochastic Analysis in Fatigue Strength of Degraded Steam Turbine Blade Steel (열화된 증기 터빈블레이드의 피로강도에 대한 확률론적 해석)

  • Kim, Chul-Su;Jung, Hwa-Young;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.262-267
    • /
    • 2001
  • In this study, the Reliability of degraded steam turbine blade was evaluated using the limited fatigue data. The statistical estimation of limited fatigue data implies that some unknown uncertainties which may be involved in fatigue reliability analysis. Therefore, an appropriate distribution in the fatigue strength was determined by the characteristic distribution - linear correlation coefficient, fatigue physics, error parameter. 3-parameter Weibull distribution is the most appropriate distribution to assume for infinite region. The load applied on the blade is mainly tensile. The maximum Von-Mises stress is 219.4 MPa at the steady state service condition. The failure probability($F_p$) derived from the strength-stress interference model using Monte carlo simulation under variable service condition is 0.25% at the 99.99% confidence level.

  • PDF

Reliability Analysis in Fatigue Strength of Connecting Rod (커넥팅 로드의 피로강도에 대한 신뢰성 해석)

  • Kim, Cheol-Su;Lee, Jun-Hyeong;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1651-1658
    • /
    • 2001
  • It is necessary to evaluate fatigue strength and reliability of the connecting rod which is core part in automotive engine to assure the high level of durability of automobile. For this purpose, the loading conditions in automotive engine is obtained by the dynamic analysis. Based on these results, the critical section was identified by the finite element analysis. The fatigue strength under constant amplitude was evaluated and the mean of the fatigue limit at R = -2.27 derived from the staircase method was 311.2MPa. And the failure probability( F$\sub$p/ ) derived from the strength-stress interference model is 0.0003% at the 99.99% confidence level and the mean factor of safety was 4.2.

A Stochastic Analysis in Steam Turbine Blade Steel Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 증기 터빈블레이드재의 확률론적 해석)

  • Kim, Chul-Su;Jung, Hwa-Young;Kang, Myung-Su;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2421-2428
    • /
    • 2002
  • In this study, the failure probability of the degraded LP turbine blade steel was performed using the Monte Carlo simulation to apply variation of applied stress and strength. For this purpose, applied stress under the service condition of steady state was obtained by theoretical stress analysis and the maximum Von-Mises stress was 219MPa. The fatigue strength under rotating-bending load was evaluated by the staircase method. Furthermore, 3-parameter Weibull distribution was found to be most appropriate among assumed distributions when the probabilistic distributions of tensile and fatigue strength were determined by the proposed analysis. The failure probability with various loading conditions was derived from the strength-stress interference model and the characteristic factor of safety was also estimated.

A Stochastic Analysis of Variation in Fatigue Crack Growth of 7075-T6 Al alloy (7075-T6 A1 합금의 피로균열진전의 변동성에 대한 확률론적 해석)

  • Kim, Jung-Kyu;Shim, Dong-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2159-2166
    • /
    • 1996
  • The stochastic properties of variation in fatigue crack growth are important in reliability and stability of structures. In this study,the stochastic model for the variation of fatigue crack growth rate was proposed in consideration of nonhomogeneity of materials. For this model, experiments were ocnducted on 7075-T6 aluminum alloy under the constant stress intensity factor range. The variation of fatigue crack growth rate was expressed by random variables Z and r based on the variation of material coefficients C and m in the paris-Erodogan's equation. The distribution of fatigue life with respect to the stress intensity factor range was evaluated by the stochastic Markov chain model based on the Paris-Erdogan's equation. The merit of proposed model is that only a small number of test are required to determine this this function, and fatigue crack growth life is easily predicted at the given stress intensity factor range.