• Title/Summary/Keyword: 와이블 계수

Search Result 38, Processing Time 0.035 seconds

A Study on Statistical Characteristics of Fatigue Life of Carbon Fiber Composite (탄소섬유 복합재 피로수명의 통계적 특성 연구)

  • Joo, Young-Sik;Lee, Won-Jun;Seo, Bo-Hwi;Lim, Seung-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.35-40
    • /
    • 2019
  • The objective of this paper is to identify the fatigue properties of carbon-fiber composite which is widely applied for the development of aircraft structures and obtain data for full-scale fatigue test. The durability and damage tolerance evaluation of composite structures is achieved by fatigue tests and parameters such as fatigue life factor and load enhancement factor. The specimens are made with carbon-fiber/epoxy UD tape and fabric prepreg. Fatigue tests are performed with several stress ratios and lay-up patterns. The Weibull shape parameters are analyzed by Sendeckyj model and individual fatigue lives with Weibull distribution. And the fatigue life factor and load enhancement factor considering reliability are evaluated.

Variation of Capacity Factors by Weibull Shape Parameters (와이블 형상계수에 따른 이용률 변화)

  • Kwon, Il-Han;Kim, Jin-Han;Paek, In-Su;Yoo, Neung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.32-39
    • /
    • 2013
  • Effects of Weibull shape parameter, k, on capacity factors of wind turbines were investigated. Wind distributions with mean wind speeds of 5 m/s, 6 m/s, 7 m/s and 8 m/s were simulated and used to estimate the annual energy productions and capacity factors of a 2MW wind turbine for various Weibull shape parameters. It was found from the study that the capacity factors of wind turbines are much affected by Weibull shape parameters. When the annual mean wind speed at the hub height of a wind turbine was about 7 m/s, and the air density was assumed to be 1.225 $kg/m^3$, the maximum capacity factor of a 2 MW wind turbine having a rated wind speed of 13 m/s was found to occur with the shape parameter of 2. It was also found that as the mean wind speed increased, the Weibull k parameter which yielded the maximum capacity factor increased. The simulated results were also validated by predictions of capacity factors of wind turbines using wind data measured in complex terrain.

A Evaluation of P-S-N Curve of Low Pressure Steam Turbine Blade Steel (저압 증기 터빈블레이드 강의 P-S-N 선도 평가)

  • Kim, Chul-Su;Jung, Hwa-Young;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.272-277
    • /
    • 2001
  • In order to evaluate variation of fatigue data of the LP steam turbine blade steel, it is important to estimate P - S - N curves to accurately define the probability distributions. In this study, new procedure is introduced to determine the expression of P - S - N curves. For this purpose, 3-parameter Weibull distribution was found to be most appropriate among assumed distributions when the probability distributions of the fatigue life were examined by the proposed analysis. Furthermore, parameter estimation for P - S - N curves was performed using various optimization to maximize the correlation coefficient. As a result of this, sequential linear programing method is used for estimation of P - S - N curves.

  • PDF

Reliability Estimation of Steam Turbine Blade Using First Order Reliability Method (FORM을 이용한 증기 터빈블레이드의 신뢰성 평가)

  • 황진호;김철수;김정규
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.199-204
    • /
    • 2002
  • 본 연구에서는 저압 증기 터빈블레이드의 안전성 확보를 위하여 작용응력 및 강도의 변동성을 고려한 확률론적 해석을 수행하였다. 정상상태에서 작용응력은 이론 및 유한요소해석에 의해서 얻을 수 있으며, 최대 von-Mises 응력은 215.4MPa이다. 회전굽힘 하중하에서의 피로한도는 응력비 R= -1에서 계단식 시험법을 이용하여 구하였으며, 이의 확률론적 특성에 가장 적합한 분포는 3 모수 와이블 분포이다. 그리고 신뢰성에 미치는 다양한 인자들의 영향은 영향계수(sensitivity factor)를 이용하여 정량적으로 평가하였다.

  • PDF

A Stochastic Analysis in Fatigue Strength of Degraded Steam Turbine Blade Steel (열화된 증기 터빈블레이드의 피로강도에 대한 확률론적 해석)

  • Kim, Chul-Su;Jung, Hwa-Young;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.262-267
    • /
    • 2001
  • In this study, the Reliability of degraded steam turbine blade was evaluated using the limited fatigue data. The statistical estimation of limited fatigue data implies that some unknown uncertainties which may be involved in fatigue reliability analysis. Therefore, an appropriate distribution in the fatigue strength was determined by the characteristic distribution - linear correlation coefficient, fatigue physics, error parameter. 3-parameter Weibull distribution is the most appropriate distribution to assume for infinite region. The load applied on the blade is mainly tensile. The maximum Von-Mises stress is 219.4 MPa at the steady state service condition. The failure probability($F_p$) derived from the strength-stress interference model using Monte carlo simulation under variable service condition is 0.25% at the 99.99% confidence level.

  • PDF

A Comparative Study for NHPP Software Reliability Model based on the Shape Parameter of Flexible Weibull Extension Distribution (유연한 와이블 확장분포의 형상모수를 이용한 NHPP 소프트웨어 신뢰성 모형에 관한 비교연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.141-147
    • /
    • 2016
  • NHPP software reliability models for failure analysis can have, in the literature, exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, infinite failures NHPP models that repairing software failure point in time reflects the situation, was presented for comparing property. Commonly used in the field of software reliability based on Flexible Weibull extension distribution software reliability of infinite failures was presented for comparison problem. The result is that a relatively small shaping parameter was effectively. The parameters estimation using maximum likelihood estimation was conducted and model selection was performed using the mean square error and the coefficient of determination.. In this research, software developers to identify software failure property follows shape parameter, some extent be able to help is considered.

Evaluation of Flexural Strength of Silicon Die with Thickness by 4 Point Bending Test (4점굽힘시험에 의한 실리콘 다이의 두께에 따른 파단강도 평가)

  • Min, Yoon-Ki;Byeon, Jai-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • In this study, flexural strength and fracture behavior of silicon die from single crystalline silicon wafer were investigated as a function of thickness. Silicon wafers with various thickness of 300, 200, 180, 160, 150, and 100 ${\mu}m$ were prepared by mechanical grinding and polishing of as-saw wafers. Flexural strength of 40 silicon dies (size: 62.5 mm${\times}$4 mm) from each wafer was measured by four point bending test, respectively. For statistical analysis of flexural strength, shape factor(i.e., Weibull modulus) and scale factor were determined from Weibull plot. Flexural strength reflecting both statistical fracture probability and size (thickness) effect of brittle silicon die was obtained as a linear function of die thickness. Fracture appearance was discussed in relation with measured fracture strength.

A study for NHPP Software Reliability Model of the Weibull Extension Model Based on Generalized Order Statistics (일반화 통계량에 의존한 와이블 확장모형을 이용한 NHPP 소프트웨어 신뢰성 모형에 관한 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.5
    • /
    • pp.339-344
    • /
    • 2015
  • NHPP software reliability models for failure analysis can have, in the literature, exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, infinite failures NHPP models that repairing software failure point in time reflects the situation, was presented for comparing property. Commonly used in the field of software reliability based on Weibull extension distribution software reliability of infinite failures was presented for comparison problem. The result is that a relatively large shape parameter was effectively. The parameters estimation using maximum likelihood estimation was conducted and Model selection was performed using the mean square error and the coefficient of determination. In this research, software developers to identify software failure property follows shape parameter, some extent be able to help is considered.

The Correlation Coefficient between the Smallest and Largest Observations in the Weibull Model in the Presence of an Unidentified Outlier (한 개의 불확실(不確實)한 이상점(異常點)을 갖는 와이블분포(分布)에서 최대(最大)값과 최소(最小)값의 상관계수(相關係數))

  • Woo, Jung-Soo;Lee, Chang-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.4
    • /
    • pp.131-136
    • /
    • 1993
  • We shall consider the trends of correlation coefficient between the smallest and largest observations in the Weibull model in the presence of an unidentified outlier, and derive the density functions of order statistics by the permanent theory.

  • PDF

A Stochastic Analysis in Steam Turbine Blade Steel Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 증기 터빈블레이드재의 확률론적 해석)

  • Kim, Chul-Su;Jung, Hwa-Young;Kang, Myung-Su;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2421-2428
    • /
    • 2002
  • In this study, the failure probability of the degraded LP turbine blade steel was performed using the Monte Carlo simulation to apply variation of applied stress and strength. For this purpose, applied stress under the service condition of steady state was obtained by theoretical stress analysis and the maximum Von-Mises stress was 219MPa. The fatigue strength under rotating-bending load was evaluated by the staircase method. Furthermore, 3-parameter Weibull distribution was found to be most appropriate among assumed distributions when the probabilistic distributions of tensile and fatigue strength were determined by the proposed analysis. The failure probability with various loading conditions was derived from the strength-stress interference model and the characteristic factor of safety was also estimated.