• Title/Summary/Keyword: 와류가진

Search Result 42, Processing Time 0.024 seconds

Dynamic Analysis of Riser with Vortex Excitation by Coupled Wake Oscillator Model (연계 후류진동 모델 적용을 통한 와류방출 가진에 의한 라이저의 동적해석)

  • 홍남식;허택녕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.109-115
    • /
    • 2000
  • Numerical model is proposed to estimate dynamic responses of riser with vortex excitation by inline current. Galerkin's finite decomposition method is implemented for the development of a numerical model and vortex excitation is modeled by coupled wake oscillator proposed by Blevins. The numerical results are inspected through the physical interpretation to give the verification and usefulness of the suggested numerical model.

  • PDF

Effect of Damkohler Number on Vortex-Heat Release Interaction in a Dump Combustor (덤프 연소기내의 와류-열방출의 관계에 대한 Damkohler 수의 영향)

  • Yu Kenneth H;Yoon Youngbin;Ahn Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.137-140
    • /
    • 2004
  • Oscillating heat release associated with periodic vortex-flame interaction was investigated experimentally. Turbulent jet flames were stabilized with recirculating hot products in a dump combustor, and large-scale periodic vortices were imposed into the jet flame by acoustic forcing. Forcing frequencies and operating parameters were adjusted to simulate unstable combustor operation in practical combustors. The objectives were to characterize vortex-heat release interaction that leads to unwanted heat release fluctuations and to identify the proper fuel injection pattern that could be used for actively suppressing such fluctuations. Phase-resolved CH* chemiluminescence and schlieren images were used as diagnostic tools. The results were compared at corresponding phases of vortex shedding cycle.

  • PDF

Control of Sound Pressure inside a Flow Excited Cavity by Regulation of Vorticity Shedding (와류진동 조절에 의한 유동가진 공동 내부의 음압 제어)

  • Park, Jong-Beom;Hwang, Cheol-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1223-1229
    • /
    • 2007
  • Flow traveling over a cavity opening forms a vortex due to unstable shear layer and induces an aerodynamic pressure excitation from the diffusion of the vortex convecting out of the trailing edge of the opening. The interaction between the excitation force and the cavity response sustains resonance in the resonator(cavity) and locked-in vortex shedding at the leading edge of the opening. The aerodynamic excitation force can be described from the diffusion of the vortex over the trailing edge and the level of its diffusivity is related to the strength of vorticity seeded at the leading edge. In this study, the control scheme of the internal pressure oscillation was proposed from regulating the vorticity at the leading edge by use of an oscillating spoiler. It was found that the relative motion between the spoiler and the air mass at the cavity opening influenced vorticity strength and the control was achieved by direct feedback of the cavity pressure fluctuation to the actuator.

Combustion Characteristics associated with a Swirl Chamber and Nozzle Length of Coaxial Swirl Injectors (동축스월분사기에서 와류실 유무 및 노즐길이에 따른 연소특성 변화)

  • Lim Byoung-Jik;Seo Seong-Hyeon;Choi Hwan-Seok;Choi Young-Hwan;Lee Seok-Jin;Kim Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.335-340
    • /
    • 2005
  • A study on the variation of combustion characteristics by injector geometries was conducted. Coaxial swirl injectors were used. Existence of swirl chamber and variation of a nozzle length become key parameters. Injectors were identified as open, closed and mixed type by existence of swirl chamber. Variation of nozzle length was made extruding the both nozzle along the axis while other design parameters remain the same. A uni-element combustor with ablative material liner and a water cooled nozzle made by oxygen free copper with outer stainless steel casing were used.

  • PDF

Dynamic characteristics analysis of forcing jet by Karhunen-Loeve transformation (Karhunen-Loeve 변환을 이용한 Forcing 제트의 동적 특성 해석)

  • Lee, Chan-Hui;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.758-772
    • /
    • 1997
  • The snapshot method is introduced to approximate the coherent structures of planar forcing jet flow. The numerical simulation of flow field is simulated by discrete vortex method. With snapshot method we could treat the data efficiently and approximate coherent structures inhered in the planer jet flow. By forcing the jet at a sufficient amplitude and at a well-chosen frequency, the paring can be controlled in the region of the jet. Finally we expressed the underlying coherent structures of planar jet flow in the minimum number of modes by Karhunen-Loeve transformation in order to understand jet flow and to make the information storage and management in computers easier.

Numerical Investigation of Effects of Tip Clearance Height on Fan Performance and Tip Clearance Flow in an Axial Fan of the Cooling Tower (냉각탑용 축류팬의 팁 간격이 팬 성능 및 틈새 유동에 미치는 영향에 관한 수치해석적 연구)

  • Oh, Keon-Je
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.44-50
    • /
    • 2012
  • 팁 간격의 크기가 냉각탑용 축류팬의 성능과 누설 유동에 미치는 영향을 조사하기 위해서 서로 다른 2가지 팁 간격을 가진 경우에 대해서 점성유동을 해석하였다. 케이싱 내에서 작동하는 축류팬 주위의 유동을 연속방정식, Navier-Stokes 방정식 등을 지배방정식으로 사용하여 수치해석 하였다. 난류유동에 나타나는 레이놀즈 응력은 ${\kappa}-{\epsilon}$ 난류모델을 사용하여 계산하였다. 전체적으로 H형 격자계를 사용하였으며, 팁 주위의 유동을 해석하기 위해서 팁 영역 주위에 부분적으로 조밀한 격자를 두었다. 팁 간격이 증가하면 누설 유동의 증가로 인한 유동 손실의 증가로 전압상승과 수력효율이 감소하였다. 팬 직경에 대한 팁 간격이 0.4%에서 1.0%로 증가하면 전압상승 값이 약 10% 정도 감소하였으며, 수력효율은 약 3% 정도 감소하였다. 팁 간격이 팁 근처 날개 주위의 압력에 미치는 영향을 보면, 팁 간격이 증가하여 누설 유동이 증가하면 흡입면과 압력면의 압력차가 전연 부근에서 감소함을 알 수 있었다. 누설 와류의 중심은 코드를 따라서 흡입면으로 부터 떨어져 나가면서 형성됨을 알 수 있었다. 누설 와류의 위치를 보면 팁 간격이 증가하면 와류 중심의 위치가 흡입면 쪽으로 이동하고, 흡입면에서 떨어진 거리도 날개 후반부에서 증가 폭이 커지는 포물선 형태로 증가함을 알 수 있었다.

LES Investigation of Pressure Oscillation in Solid Rocket Motor by an Inhibitor (고체모터의 인히비터에 의한 압력 진동 특성 LES 연구)

  • Hong, Ji-Seok;Moon, Hee-Jang;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.42-49
    • /
    • 2015
  • The pressure oscillation induced by inhibitor in a solid rocket motor has been investigated by 3D large eddy simulation(LES) and proper orthogonal decomposition(POD). The vortex generation and breakdown at inhibitor are periodically observed between the inhibitor and the nozzle by flow-acoustic coupling mechanism. The excitation of pressure oscillation occurs as the flow impinges on the submerged nozzle head which recirculate in the cavity in rear dome of the motor chamber. The vortex generation frequency is closely related with the shedding frequencies of the detached vorticities at the inhibiter, which fairly compared with the experimental data.

Numerical Investigation on the Mechanism of Mode Transition in Axi-symmetric Supersonic Jet Screech (축대칭 초음속 제트에서 스크리치 모드 전이현상의 수치적 연구)

  • Bin, Jong-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.790-797
    • /
    • 2010
  • Mode transition of the axi-symmetric screech tone in the low supersonic Mach number range from 1.0 to 1.20 is numerically analyzed. The axi-symmetric Navier-Stokes equations and the k-e turbulence model are solved in the cylindrical coordinate system. The dispersion-relation-preserving(DRP) scheme is applied for space discretization and the optimized four levels marching method are used for time integration. At low supersonic Mach numbers with an axi-symmetric A1 mode in the simulation, it is shown that acoustic propagation due to the nonlinear effects is seen in the lateral direction and the screech tone frequency is the same as the vortex passing frequency due to the generation of intense large-scale vortical motions.

Reduction of Flow-Induced Vibration in the Heat Exchanger (열교환기에서의 유동유발 진동 저감)

  • 장한기;김승한;이재현;양정렬
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1200-1209
    • /
    • 1999
  • This paper reports a peculiar example of flow-induced vibration in a very large plant and the whole procedure of reducing the vibration. During the operation of flue gas desurfurization unit of the thermal power plant, serious vibration was dtected at all around the plant. The worst vibration was recorded on the heat exchanger surface, which weighed 180 tones, as 17.8 m/$s^2$ in vibration amplitude at 34 Hz. To identify the vibration, frequency analysis on the response vibration as well as on the expected excitation forces and the system resonance was executed. This investigation revealed that the cause of the vibration was vortex shedding from the circular pipes in the heat exchanger. Vortices from the pipes excited acoustic resonance in the heat exchanger room, which, in turn, made the structure vibrate. Through inserting the baffles between the pipes, which had an effect of cutting the acoustic wave at resonance frequency, the vibration was eliminated dramatically.

  • PDF

A Visual Investigation of Coherent Structure Behaviour Under Tone-Excited Laminar Non-Premixed Jet Flame (음향 가진된 층류 비예혼합 분류 화염에서 거대 와류 거동에 관한 가시화 연구)

  • Lee, Kee-Man;Oh, Sai-Kee;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.275-285
    • /
    • 2003
  • A visualization study on the effect of forcing amplitude in tone-excited jet diffusion flames has been conducted. Visualization techniques are employed using optical schemes. which are a light scattering photography. Flame stability curve is attained according to Reynolds number and forcing amplitude at a fuel tube resonant frequency. Flame behavior is globally grouped into two from attached flame to blown-out flame according to forcing amplitude: one sticks the tradition flame behavior which has been observed in general jet diffusion flames and the other shows a variety of flame modes such as the flame of a feeble forcing amplitude where traditionally well-organized vortex motion evolves, a fat flame. an elongated flame. and an in-burning flame. Particular attention is focused on an elongation flame. which is associated with a turnabout phenomenon of vortex motion and on a reversal of the direction of vortex roll-up. It is found that the flame length with forcing amplitude is the direct outcome of the evolution process of the formed inner flow structure. Especially the negative part of the acoustic cycle under the influence of a strong negative pressure gradient causes the shapes of the fuel stem and fuel branch part and even the direction of vortex roll-up to dramatically change.