• Title/Summary/Keyword: 옹벽

Search Result 545, Processing Time 0.023 seconds

Experimental Study of Residual Earth Pressure Acting on the Retaining Wall under Repeating Load (반복하중에 의해 옹벽에 작용하는 잔류토압의 실험적 연구)

  • 전용백
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.51-66
    • /
    • 1992
  • As the scale of public works get recently larger and diversified. the construction of retain- ing walls is required for the effective use of land. In the design of the retaining wall, the reliability and fitness of the retaining wall itself are regarded prudently although there is a tendency to ignore the importance of backfill. In this study, the experiments under various conditions such as repetition-continuity-load, roller-press load, and working space of backfill, are carried out using a model retaining wall similar to the real system. The experimental roes tilts are interpreted theoretically, Using a computer program, the experimental results are analyzed and compared with other theoretical wonts.

  • PDF

Seismic Response of Soil-Reinforced Segmental Retaining Walls by Finite Element Analysis (유한요소해석에 의한 블록식 보강토 옹벽의 지진시 응답특성)

  • 유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.15-25
    • /
    • 2001
  • 본 고에서는 블록식 보강토 옹벽의 지진시 거동에 관한 유한요소해석 결과를 다루었다. 보강토 옹벽의 지진시 변위거동을 검토한 결과 벽체저부를 지점으로 하는 캔틸레버형태의 변위 거동을 보였으며 따라서 옹벽 상단부에서의 보강재 인장력 증가가 현저하게 나타나 벽체전반에 걸친 분포양상은 균등한 경향을 보였다. 한편, 지진하중으로 인한 증분유발인장력에 관하여 검토한 결과 기존의 보강토 옹벽 내진설계기준과 비교하여 정성.정량적인 측면에서 상당한 차이를 보였으며 내진설계기준이 전반적으로 과소평가 하는 것으로 나타났다. 아울러서, 내진설계측면에서 변위억제 방안에 관한 매개변수 연구결과 임의 조건에 있어서 최대의 보강효과를 나타내는 보강재 임계 강성과 포설길이가 존재하며 최적의 보강효과를 얻기 위해서는 이에 대한 종합적인 검토가 요구되는 것으로 나타났다. 본 고에서는 연구결과를 종합적으로 고찰하여 실무 적용관점에서의 주안점을 언급하였다.

  • PDF

Assessment of Frictional Characteristic for the Segmental Retaining Wall Unit (보강토 옹벽 전면블록의 마찰특성 평가)

  • Kim Jin-Man;Cho Sam-Deok;Oh Se-Yong;Lee Dae-Young;Paik Young-Shik
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.51-58
    • /
    • 2005
  • The use of geogrid for SRW systems and bridge abutment has increased rapidly over the past 10 years in Korea. The concept of segmental retaining walls and reinforced soil is very old and for example The Ziggurats of Babylonia(i.e. Tower of Babel) were built some 2,500 to 3,000 years ago using soil reinforcing methods very similar to those described in current design. Modern SRW(Semental Retaining Wall) units were introduced in 1960's as concrete crib retaining wall systems. In this paper, the friction properties between segmental concrete units and geogrid are investigated by performing various tests.

Internal Stability of Timber Framed Earth Retaining Wall (목재옹벽의 내적안정 평가에 관한 연구)

  • Lee, Kwang-Wu;Kim, Ju-Hyong;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.81-89
    • /
    • 2011
  • This paper introduces a recently developed thinning-out timber framed earth retaining wall system. Timber framed retaining walls are usually designed by using design code of gravity type retaining wall but internal stability of timber framed earth retaining walls is often neglected. In this study, it is recommended to use the design code for segmental retaining walls by National Concrete Masonry Association (NCMA, 1997) to check internal stability of timber framed earth retaining wall. Based on the several shear test results for 3 types of timber frames, a simple design chart including internal stability is suggested.

Field Measurements of Compaction-Induced Lateral Earth Pressure on a Reversed-T Type Retaining Wall (역 T형 옹벽에 뒤채움다짐으로 유발된 횡토압의 현장계측)

  • Jeong, Seong-Gyo;Lee, Man-Ryeol;Jeong, Jin-Gyo
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.5-18
    • /
    • 1995
  • A Compaction-induced lateral earth pressure was measured for a reversed-T type retaining wall of 4m high for three months. As a result of in-situ measurements, the lateral earth pressure fluctuated sharply with time after backfill, which was closely dependent upon the displacement of the retaining wall. The measured results showed big discrepancy with theoretical predictions made by existing theories, which are applicable to rigid wall. However, the in -situ data twas compared relatively well with those obtained by the finite element method. Analysis showed that the discrepancy may be caused by the displacement of the retaining wall during the compaction of the backfill.

  • PDF

Failure Mechanism of Geosynthetic-Reinforced Segmental Retaining Wall in a Tiered Configuration (계단식 보강토옹벽의 파괴 메카니즘 연구)

  • Yoo, Chung Sik;Jung, Hyuk Sang;Lee, Bong Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.4
    • /
    • pp.13-19
    • /
    • 2004
  • This paper presents the results of an investigation on the failure mechanism of geosynthetic-reinforced segmental retaining walls in tiered arrangement using reduced-scale model tests. In this laboratory model tests, a reduced scale model of the full-scale geosynthetic-reinforced wall which was constructed in Geotechnical Experimental Site at Sungkyunkwan University was used to perform a study on the failure mechanism. In order to a high degree of realism, the geometry of the wall and the material properties were selected applying Similitude Laws was used to perform laboratory model tests. And contrary to the previous failure tests with various surcharge pressures, the failure by the tired wall weight was observed. Primary variables considered in the model tests include the different offset distance between the tiers and the different reinforcement length in the lower tier and as a result of the parametric study, a different failure pattern was observed.

  • PDF

A Study on the Collapse Reason by Slope Stability Analysis Considering Construction Stages (시공단계를 고려한 비탈면의 안정성 검토를 통한 비탈면 활동원인 연구)

  • Byun, Yoseph;Jang, Hyeonkil;Jung, Kyoungsik;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.25-31
    • /
    • 2011
  • In recent rainy seasons, severe rain storms have caused frequent reinforced retaining wall collapses and slope sliding which have lead to casualties. In this paper, investigating cases of reinforced retaining wall failure, the causes of cracks in reinforced retaining wall and slope sliding have been examined, and a finite element analysis considering the construction phase has been done to analyze the cause and characteristics of slope sliding. As a result, reinforced retaining wall displacement has increased due to heavy rain storms and the increase size has been shown to be large. From these results, it has been analyzed that pile driving can have an effect on the collapse of reinforced retaining walls.

A Study on the Evaluation of Field Installation Damage and Strength Reduction Factor of Geogrid for Reinforced Retaining Wall (보강토 옹벽용 지오그리드의 현장 내시공성 및 강도 감소계수 평가에 관한 연구)

  • Park, Juhwan;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.7
    • /
    • pp.5-12
    • /
    • 2012
  • Recently the installation of reinforced earth retaining walls in the domestic construction site has increased, surpassing conventional RC walls. These reinforced walls have various types depending on the reinforcing material, installation method and the form of face panel. However, there are difficulties in design and construction management due to the unproved safety of construction method. In case of reinforcing materials, despite the fact that they come in all different sizes and types produced by small businesses or partially imported with cheap price and low quality, no proper standards for designing the walls have been suggested. In order to apply reinforced retaining wall system to broad cases and design the walls effectively considering site conditions, specific design and construction guidelines for efficient construction management are needed. In conclusion, this study verified that reduction factors can be greatly affected by grain sizes and stiffness of backfill materials and granularity range, therefore in case of relatively large construction site, it is required to redesign the reinforced retaining wall by evaluating site installation resistance test, applying respective reduction factors to each backfill material and select the right geogrid depending on the usage of retaining wall so as to enhance the safety of reinforced earth retaining walls with efficiency.

Analysis of Damage Cases of Reinforced Earth Retaining Walls for Expressways at the Time of Introduction 30 Years (도입 30년 시점에서 고속도로 보강토옹벽의 손상사례 분석)

  • Do, Jongnam;Kim, Nagyoung;Kim, Myoungil;Park, Doohee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.12
    • /
    • pp.29-34
    • /
    • 2020
  • Reinforced earth retaining walls were developed in France in the 1970s and began to be applied in earnest to Korea in the 1990s. And now, about 1,300 reinforced soil retaining walls support the embankment of highways and bridge connections. The reinforced earth retaining wall construction technology has evolved day by day, and in recent years the reinforced earth retaining wall itself has been developed and introduced as a demonstration. However, various damages are constantly occurring in the reinforced earth retaining walls constructed throughout the highway. The cause of this was analyzed as minor defects in the design, construction, and maintenance stages. The solution for this is a change in perception of the importance of each individual process, but this does not form overnight. In this study, 30 years have passed since the introduction of the reinforced soil retaining wall on the highway, the damage cases were analyzed and categorized that have occurred in the reinforced soil retaining wall so far, and attempted to present a confrontation. As a result, the damage occurring on the reinforced soil retaining wall was divided into 10 types, and the causes and countermeasures in the design, construction, and maintenance stages for each were derived.

A Study on the Flowable Backfill with Waste Foundry Sand for Retaining Wall (유동특성을 이용한 폐주물사 혼합물의 옹벽뒷채움재 연구)

  • 조재윤;이관호;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.17-30
    • /
    • 2000
  • The objective of this study is to evaluate the lateral earth pressure and the stability of small scale retaining wall with waste foundry sand(WFS) mixtures as a controlled low strength materials (CLSM). Three different types of WFS, like Green WFS, Hurane WFS and Coated WFS, were used in this study, and fly ash of Class F type was adopted. To evaluate the lateral earth pressure and the stability of retaining wall, two different samll scale retaining wall tests, which are called an artificially controlled strain method and a natural strain method, were carried out. In case of an artificially controlled strain method, the coefficient of lateral earth pressure, just after backfilling of WF mixtures, was around 0.8 to 1.0, and most of earth pressure was dissipated within 12 hours. In case of a natural strain method, two steps of stage constructions were employed. The mixtures of Hurane WFS and Coated WFS showed fast decrease of earth pressure due to a relatively good drainage. Judging from the sta bility of retaining wall for overturning and sliding, two steps of stage construction for 2 days were enough to finish the backfill of 6-m height of retaining wall. Also, considering the curling effect of WFS mixtures, the stability of retaining wall increased as curling time increased.

  • PDF