• Title/Summary/Keyword: 온-보드 영상장치

Search Result 20, Processing Time 0.032 seconds

A Study on the Availability of the On-Board Imager(OBI) and Cone-Beam CT(CBCT) in the Verification of Patient Set-up (온보드 영상장치(On-Board Imager) 및 콘빔CT(CBCT)를 이용한 환자 자세 검증의 유용성에 대한 연구)

  • Bak, Jino;Park, Sung-Ho;Park, Suk-Won
    • Radiation Oncology Journal
    • /
    • v.26 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Purpose: On-line image guided radiation therapy(on-line IGRT) and(kV X-ray images or cone beam CT images) were obtained by an on-board imager(OBI) and cone beam CT(CBCT), respectively. The images were then compared with simulated images to evaluate the patient's setup and correct for deviations. The setup deviations between the simulated images(kV or CBCT images), were computed from 2D/2D match or 3D/3D match programs, respectively. We then investigated the correctness of the calculated deviations. Materials and Methods: After the simulation and treatment planning for the RANDO phantom, the phantom was positioned on the treatment table. The phantom setup process was performed with side wall lasers which standardized treatment setup of the phantom with the simulated images, after the establishment of tolerance limits for laser line thickness. After a known translation or rotation angle was applied to the phantom, the kV X-ray images and CBCT images were obtained. Next, 2D/2D match and 3D/3D match with simulation CT images were taken. Lastly, the results were analyzed for accuracy of positional correction. Results: In the case of the 2D/2D match using kV X-ray and simulation images, a setup correction within $0.06^{\circ}$ for rotation only, 1.8 mm for translation only, and 2.1 mm and $0.3^{\circ}$ for both rotation and translation, respectively, was possible. As for the 3D/3D match using CBCT images, a correction within $0.03^{\circ}$ for rotation only, 0.16 mm for translation only, and 1.5 mm for translation and $0.0^{\circ}$ for rotation, respectively, was possible. Conclusion: The use of OBI or CBCT for the on-line IGRT provides the ability to exactly reproduce the simulated images in the setup of a patient in the treatment room. The fast detection and correction of a patient's positional error is possible in two dimensions via kV X-ray images from OBI and in three dimensions via CBCT with a higher accuracy. Consequently, the on-line IGRT represents a promising and reliable treatment procedure.

Analysis of Uncertainties due to Digitally Reconstructed Radiographic (DRR) Image Quality in 2D-2D Matching between DRRs and kV X-ray Images from the On-Board Imager (OBI) (디지털 재구성 방사선영상과 온보드 영상장치를 이용한 2D-2D 정합 시 디지털 재구성 방사선영상의 질이 정합 정확도에 미치는 영향 분석)

  • Cheong Kwang-Ho;Cho Byung-Chul;Kaug Sei-Kwon;Kim Kyoung-Joo;Bae Hoon-Sik;Suh Tae-Suk
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.67-76
    • /
    • 2006
  • We evaluated the accuracy of a patient setup error correction due to reference image quality for a 2D-2D matching process. Digitally reconstructed radiographs (DRRs) generated by use of the Pinnacle3 and the Eclipse for various regions of a humanoid phantom and a patient for different CT slice thickness were employed as a reference images and kV X-ray Images from the On-Board Imager were registered to the reference DRRs. In comparison of the DRRs and profiles, DRR image quality was getting worse with an increase of CT image slice thickness. However there were only slight differences of setup errors evaluation between matching results for good and poor reference DRRs. Although DRR image quality did not strongly affect to the 2D-2D matching accuracy, there are still potential errors for matching procedure, therefore we recommend that DRR images are needed to be generated with less than 3mm slice thickness for 2D-2D matching.

  • PDF

Analysis of Overall Setup Accuracy Using On-Board Imager�� (온-보드 영상장치를 이용한 총체적 셋업의 정확성 분석)

  • Ma, Sun-Young;Lim, Sang-Wook;Kang, Soo-Man;Jeung, Tae-Sig
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.67-71
    • /
    • 2011
  • We evaluated the overall setup accuracy for the On-Board Imager (OBI, Varian Medical Systems Inc., Palo Alto, CA, USA), with attention to the laser, the gantry, and operator performance. We let experienced technicians place the marker block on the couch using a lock bar system, with alignment to the isocenter of the laser, every morning. A pair of radiographic images of the marker block was acquired at $0^{\circ}$ and $270^{\circ}$ angles to the kV arm to correct the position using a 2D/2D matching technique. Once the desired match was achieved, the couch was moved remotely to correct the setup error and the parameters were saved. The average for the vertical and the longitudinal displacements were 0.65 mm and 0.66 mm, and 0.01 mm for the lateral displacement. The average for the vertical and longitudinal displacements were statistically significant at the 0.05 level (p value=0.000 for both), while the p value for the lateral direction was 0.829. These results show that the tendencies to displacement in vertical and longitudinal directions occur through systematic error, while systematic error was not found in the lateral displacement. This daily overall evaluation is practical and easy to find the systematic and random errors in the setup system; however, a daily QA for laser and OBI alignment is still needed to minimize the systematic error in aligning patients.

Patient Position Verification and Corrective Evaluation Using Cone Beam Computed Tomography (CBCT) in Intensity.modulated Radiation Therapy (세기조절방사선치료 시 콘빔CT (CBCT)를 이용한 환자자세 검증 및 보정평가)

  • Do, Gyeong-Min;Jeong, Deok-Yang;Kim, Young-Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 2009
  • Purpose: Cone beam computed tomography (CBCT) using an on board imager (OBI) can check the movement and setup error in patient position and target volume by comparing with the image of computer simulation treatment in real.time during patient treatment. Thus, this study purposed to check the change and movement of patient position and target volume using CBCT in IMRT and calculate difference from the treatment plan, and then to correct the position using an automated match system and to test the accuracy of position correction using an electronic portal imaging device (EPID) and examine the usefulness of CBCT in IMRT and the accuracy of the automatic match system. Materials and Methods: The subjects of this study were 3 head and neck patients and 1 pelvis patient sampled from IMRT patients treated in our hospital. In order to investigate the movement of treatment position and resultant displacement of irradiated volume, we took CBCT using OBI mounted on the linear accelerator. Before each IMRT treatment, we took CBCT and checked difference from the treatment plan by coordinate by comparing it with the image of CT simulation. Then, we made correction through the automatic match system of 3D/3D match to match the treatment plan, and verified and evaluated using electronic portal imaging device. Results: When CBCT was compared with the image of CT simulation before treatment, the average difference by coordinate in the head and neck was 0.99 mm vertically, 1.14 mm longitudinally, 4.91 mm laterally, and 1.07o in the rotational direction, showing somewhat insignificant differences by part. In testing after correction, when the image from the electronic portal imaging device was compared with DRR image, it was found that correction had been made accurately with error less than 0.5 mm. Conclusion: By comparing a CBCT image before treatment with a 3D image reconstructed into a volume instead of a 2D image for the patient's setup error and change in the position of the organs and the target, we could measure and correct the change of position and target volume and treat more accurately, and could calculate and compare the errors. The results of this study show that CBCT was useful to deliver accurate treatment according to the treatment plan and to increase the reproducibility of repeated treatment, and satisfactory results were obtained. Accuracy enhanced through CBCT is highly required in IMRT, in which the shape of the target volume is complex and the change of dose distribution is radical. In addition, further research is required on the criteria for match focus by treatment site and treatment purpose.

  • PDF

Consideration of the Effect of Artifact during the Image Guided Radiation Therapy Using the Fiducial Marker (영상 유도 방사선치료 시 Fiducial Marker의 Artifact에 관한 연구)

  • Kim, Jong-Min;Kim, Dae-Sup;Back, Geum-Mun;Kang, Tae-Yeong;Hong, Dong-Ki;Yun, Hwa-Yong;Kwon, Kyeong-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Purpose: The effect of artifact was analyzed, which occurs from fiducial marker during the liver Image Guided Radiation Therapy (IGRT) using the fiducial marker. Materials and Methods: The size of artifact of fixed fiducial marker and length of mobile fiducial marker locus were measured using the On-Board Imager system (OBI) and CT simulator, and 2D-2D matching and 3D-3D matching were carried out, respectively, and at this time, the coordinates transition value of couch was analyzed. Results: The measurement of fixed fiducial marker artifact size indicated CT 4.90, 8.10, 12.90, 19.70 mm and OBI 5.60, 10.60, 14.70, 29.40 mm based on the reference CT slice thickness of 1.25, 2.50, 5.00, and 10.00 mm. Meanwhile, the measurement of mobile fiducial marker locus length indicated CT 42.00, 43.10, 46.50 mm, and OBI 43.40, 46.00, 49.30 mm. The coordinates transition of 1.00, 2.00, and 8.00 mm occurred between 2D-2D matching and 3D-3D matching. Conclusion: It was confirmed that the therapy error increased during IGRT due to the influence of artifact when CT slice thickness increased. Thus, it may be desirable to acquire the image less than 2.50 mm in slice thickness when IGRT is implemented using the fiducial marker.

  • PDF

Development of Quality Assurance Program for the On-board Imager Isocenter Accuracy with Gantry Rotation (갠트리 회전에 의한 온-보드 영상장치 회전중심점의 정도관리 프로그램 개발)

  • Cheong, Kwang-Ho;Cho, Byung-Chul;Kang, Sei-Kwon;Kim, Kyoung-Joo;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.212-223
    • /
    • 2006
  • Positional accuracy of the on-board imager (OBI) isocenter with gantry rotation was presented in this paper. Three different type of automatic evaluation methods of discrepancies between therapeutic and OBI isocenter using digital image processing techniques as well as a procedure stated in the customer acceptance procedure (CAP) were applied to check OBI isocenter migration trends. Two kinds of kV x-ray image set obtained at OBI source angle of $0^{\circ},\;90^{\circ},\;180^{\circ},\;270^{\circ}$ and every $10^{\circ}$ and raw projection data for cone-beam CT reconstruction were used for each evaluation method. Efficiencies of the methods were also estimated. If a user needs to obtain an isocenter variation map with full gantry rotation, a method taking OBI image for every $10^{\circ}$ and fitting with 5th order polynomial was appropriate. However for a mere quality assurance (QA) purpose of OBI isocenter accuracy, it was adequate to use only four OBI Images taken at the OBI source angle of $0^{\circ},\;90^{\circ},\;180^{\circ}\;and\;270^{\circ}$. Maximal discrepancy was 0.44 mm which was observed between the OBI source angle of $90^{\circ}\;and\;180^{\circ}$ OBI isocenter accuracy was maintained below 0.5 mm for a year. Proposed QA program may be helpful to Implement a reasonable routine QA of the OBI isocenter accuracy without great efforts.

  • PDF

Evaluation of Target Position's Accuracy in 2D-3D Matching using Rando Phantom (인체팬톰을 이용한 2D-3D 정합시 타켓위치의 정확성 평가)

  • Jang, Eun-Sung;Kang, Soo-Man;Lee, Chul-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.1
    • /
    • pp.33-39
    • /
    • 2009
  • Purpose: The aim of this study is to compare patient's body posture and its position at the time of simulation with one at the treatment room using On-board Imaging (OBI) and CT (CBCT). The detected offsets are compared with position errors of Rando Phantom that are practically applied. After that, Rando Phantom's position is selected by moving couch based on detected deviations. In addition, the errors between real measured values of Rando Phantom position and theoretical ones is compared. And we will evaluate target position's accuracy of KV X-ray imaging's 2D and CBCT's 3D one. Materials and Methods: Using the Rando Phantom (Alderson Research Laboratories Inc. Stanford. CT, USA) which simulated human body's internal structure, we will set up Rando Phantom on the treatment couch after implementing simulation and RTP according to the same ways as the real radioactive treatment. We tested Rando Phantom that are assumed to have accurate position with different 3 methods. We measured setup errors on the axis of X, Y and Z, and got mean standard deviation errors by repeating tests 10 times on each tests. Results: The difference between mean detection error and standard deviation are as follows; lateral 0.4+/-0.3 mm, longitudinal 0.6+/-0.5 mm, vertical 0.4+/-0.2 mm which all within 0~10 mm. The couch shift variable after positioning that are comparable to residual errors are 0.3+/-0.1, 0.5+/-0.1, and 0.3+/-0.1 mm. The mean detection errors by longitudinal shift between 20~40 mm are 0.4+/-0.3 in lateral, 0.6+/-0.5 in longitudinal, 0.5+/-0.3 in vertical direction. The detection errors are all within range of 0.3~0.5 mm. Residual errors are within 0.2~0.5 mm. Each values are mean values based on 3 tests. Conclusion: Phantom is based on treatment couch shift and error within the average 5mm can be gained by the diminution detected by image registration based on OBI and CBCT. Therefore, the selection of target position which depends on OBI and CBCT could be considered as useful.

  • PDF

Evaluation of Targeting Using Marker Seed Phantom (Maker Seed Phantom을 이용한 표적위치의 정확성 평가)

  • Jang, Eun-Sun;Jeong, Bong-Jae;Im, In-Chul;Kang, Su-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.2
    • /
    • pp.67-72
    • /
    • 2011
  • Accuracy control of Linear accelerator installed in OBI is done daily and weekly and importance of accuracy multiplies exponentially at that moment. Purpose of this experiment is everyday and twice a week over a four month period (march~june) 2009 year to confirm maintenance of accuracy through Quality control of OBI. In short, measurement of exponentially multiplying accuracy of OBI and regular accuracy control was able to maintain accuracy from the center of treatment within 0.1 cm. Therefore, evaluation of exponentially multiplying accuracy using OBI accuracy control linear accelerator phantom on daily, weekly basis was confirmed.

Evaluation of Geometric Correspondence of kV X-ray Images, Electric Portal Images and Digitally Reconstructed Radiographic Images (kV X선 영상, 전자조사문 영상, 디지털화재구성 영상 간 기하학적 일치성 평가)

  • Cheong, Kwang-Ho;Kim, Kyoung-Joo;Cho, Byung-Chul;Kang, Sei-Kwon;Juh, Ra-Hyeong;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.118-125
    • /
    • 2007
  • In this study we estimated a geometric correlation among digitally reconstructed radiographic image (DRRI), kV x-ray image (kVXI) from the On-Board Imager (OBI) and electric portal image (EPI). To verify geometric correspondence of DRRI, kVXI and EPI, specially designed phantom with indexed 6 ball bearings (BBs) were employed. After accurate setup of the phantom on a treatment couch using orthogonal EPIs, we acquired set of orthogonal kVXIs and EPIs then compared the absolute positions of the center of the BBs calculated at each phantom plane for kVXI and EPI respectively. We also checked matching result for obliquely incident beam (gantry angle of $315^{\circ}$) after 2D-2D matching provided by OBI application. A reference EPI obtained after initial setup of the phantom was compared with 10 series of EPIs acquired after each 2D-2D matching. Imaginary setup errors were generated from -5 mm to 5 mm at each couch motion direction. Calculated positions of all center positions of the BBs at three different images were agreed with the actual points within a millimeter and each other. Calculated center positions of the BBs from the reference and obtained EPIs after 2D-2D matching agreed within a millimeter. We could tentatively conclude that the OBI system was mechanically quite reliable for image guided radiation therapy (IGRT) purpose.

  • PDF