We developed a methodology of rule acquisition from texts such as Web pages which utilizes ontology in identification of rule components. We expect that the proposed methodology can reduce the bottleneck of rule acquisition and contribute to the utilization of rule based systems. As parts of our research, we designed an ontology for rule acquisition named OntoRule and proposed a rule acquisition methodology through OntoXRML which is an acquisition tool using OntoRule. Also, we evaluated our approach by calculating missed recommendations and wrong recommendations of rule components in rule acquisition experiments over three online bookstores.
It is needed to support intelligent customized health information service for user convenience in PHR based Personal Health Care Service Platform. In this paper, we specify an ontology-based health data model for Personal Health Care Service Platform. We also design a knowledge search algorithm that can be used to figure out similar health record by applying machine learning and data mining techniques. Axis-based mining algorithm, which we proposed, can be performed based on axis-attributes in order to improve relevance of knowledge exploration and to provide efficient search time by reducing the size of candidate item set. And K-Nearest Neighbor algorithm is used to perform to do grouping users byaccording to the similarity of the user profile. These algorithms improves the efficiency of customized information exploration according to the user 's disease and health condition. It can be useful to apply the proposed algorithm to a process of inference in the Personal Health Care Service Platform and makes it possible to recommend customized health information to the user. It is useful for people to manage smart health care in aging society.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.5
/
pp.600-608
/
2020
Machine learning constructs an objective function from learning data, and predicts the result of the data generated by checking the objective function through test data. In machine learning, input data is subjected to a normalisation process through a preprocessing. In the case of numerical data, normalization is standardized by using the average and standard deviation of the input data. In the case of nominal data, which is non-numerical data, it is converted into a one-hot code form. However, this preprocessing alone cannot solve the problem. For this reason, we propose a method that uses ontology to normalize input data in this paper. The test data for this uses the received signal strength indicator (RSSI) value of the Wi-Fi device collected from the mobile device. These data are solved through ontology because they includes noise and heterogeneous problems.
Korean cyber universities now provide higher education service to learners but the courses suffer major limitations of low quality and inefficient format of their learning contents. Because of the absence of any standard authoring strategy for learning contents, tutors develop their own courseware with various formats and content structures. In addition, the lack of association between content learners causes them difficulties in finding and reusing related contents. In this paper, we propose an authoring strategy foradvanced learning contents based on SCORM and ontology. Our strategy improvesthe reusability and associativity of learning contents. We demonstrate the effectiveness of our proposed authoring strategy through developing learning contents such as understanding of digital contents.
Vision-based scene understanding is to infer and interpret the context of a scene based on the evidences by analyzing the images. A probabilistic approach using Bayesian networks is actively researched, which is favorable for modeling and inferencing cause-and-effects. However, it is difficult to gather meaningful evidences sufficiently and design the model by human because the real situations are dynamic and uncertain. In this paper, we propose a learning method of Bayesian network that reduces the computational complexity and enhances the accuracy by searching an efficient BN structure in spite of insufficient evidences and training data. This method represents the domain knowledge as ontology and builds an efficient hierarchical BN structure under constraint rules that come from the ontology. To evaluate the proposed method, we have collected 90 images in nine types of circumstances. The result of experiments indicates that the proposed method shows good performance in the uncertain environment in spite of few evidences and it takes less time to learn.
Although the current Web search engines provide tremendous information, it is hard to find right information among the huge information. Users need to spend extra time to filter out unnecessary information. In order to overcome the limit of current Web search engines, Semantic Web was developed to provide efficient search, integration, and reuse of information by structuring semantic information from Web resources. In this paper, an elementary education contents retrieval system using Semantic Web is proposed. The proposed system emphasizes history contents that have high relevancy among data. For construction of the proposed system, ontology is proposed first for elementary study contents and ontology for historical contents is proposed for easy access to those contents using semantic relation among them. Based on the ontology, the proposed system is designed and implemented. The proposed system has the following characteristics. First, the system provides various query formats in detail so that search results can be refined efficiently. Second, the system presents only semantically information connected with key words or including key words using study contents ontology. Finally, the proposed system can increase study effects by presenting various contents that are related with query by users.
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.168-171
/
2011
One important issue in semantic web is identification and selection of domain concepts for domain ontology learning when several hundreds or even thousands of terms are extracted and available from relevant text documents shared among the members of a domain. We present a novel domain concept acquisition and selection approach for ontology learning that uses affinity propagation algorithm, which takes as input semantic and structural similarity between pairs of extracted terms called data points. Real-valued messages are passed between data points (terms) until high quality set of exemplars (concepts) and cluster iteratively emerges. All exemplars will be considered as domain concepts for learning domain ontologies. Our empirical results show that our approach achieves high precision and recall in selection of domain concepts using less number of iterations.
Proceedings of the Korean Society of Computer Information Conference
/
2016.01a
/
pp.187-190
/
2016
본 연구는 국내 교육과정의 빈번한 변경으로 인해 교사나 학생들이 교육이나 학습에 어려움을 겪고 있는 문제를 해결하기 위해 교육과정이나 교육 단계 등을 온톨로지를 기반으로 자동 연계되어 교육과정이나 체계에 상관없이 교육내용을 접근할 수 있는 방안을 제공한다. 초등.중등.고등학교 간 연계되어야 할 교육내용이 교육과정 변경에 따라 표현되는 상이한 교육과정체계로 인해 다양한 문제를 야기하고 사회적. 기술적 어려움을 가중시키는 것을 완화하고자 본 방법을 제안한다. 본 방법은 교과과정에서 교육 내용의 중심이 되는 성취기준을 기본으로 교육 단원-교육내용 등을 연계하고 또 교육 내용에 따라 제공되는 교육 콘텐츠까지도 연계함으로서 교사나 학생등이 쉽게 교육 내용을 접근하고 사용할 수 있는 장점이 있다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.487-489
/
2005
본 논문에서는 온톨로지의 개념구조를 이용한 웹페이지의 의미적 분류방법을 제안한다. 웹 문서들이 가지는 용어 정보들과 어휘들 간의 개념 구조를 파악하여 온톨로지를 확장시키면서 이를 문서분류에 적용하여 의미적 분류가 이루어지게 한다. 문서 분류는 문서들을 가장 잘 표현할 수 있는 자질들을 정하고 이러한 자질들을 통해 미리 정의된 2개 이상의 카테고리에 문서의 내용을 파악하여 가장 관련이 있는 카테고리로 할당하는 것이다. 본 논문에서는 웹 문서에서 추출한 용어 정보들의 유사도와 온톨로지 카테고리의 유사도를 계산하여 웹 문서를 분류하여 문서 분류를 위한 실험데이터나 학습과정 없이 바로 실시간으로 문서분류가 이루어지며, 결과적으로 온톨로지와 문서들이 가지는 고유한 의미와 관계의 식별을 통하여 보다 더 정확하게 문서분류를 가능하게 해준다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.7
no.2
/
pp.182-187
/
2006
This paper proposes a method for boundary recognition of named entity using hidden markov model and ontology information of biological named entity. We uses smoothing method using 31 feature information of word and hierarchical information to alleviate sparse data problem in HMM. The GENIA corpus version 2.1 was used to train and to experiment the proposed boundary recognition system. The experimental results show that the proposed system outperform the previous system which did not use ontology information of hierarchical information and smoothing technique. Also the system shows improvement of execution time of boundary recognition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.