• Title/Summary/Keyword: 온탕침지 처리

Search Result 8, Processing Time 0.038 seconds

Effect of Hot Water and Lime-Sulfur Mixture Treatment for Disinfection of Seeds for Organic Lettuce (유기농 상추 재배를 위한 온탕침지와 석회유황합제의 종자소독 효과)

  • Kim, Min-Jeong;Shim, Chang-Ki;Ko, Byeong-Gu;Kim, Ju;Park, Jong-Ho;Yoon, Ji-Young
    • Journal of agriculture & life science
    • /
    • v.53 no.3
    • /
    • pp.27-39
    • /
    • 2019
  • The purpose of this study was to investigate the effect of hot water treatment and pH corrected lime sulfur combination treatment on the fungicidal and bacterial disinfection effects and germination rate of organic lettuce seeds. Among the followers, Alternaria sp. was infected 53.3% and Aspergillus sp. and Cladosporium sp. Infected 14.5% and 5.4%, respectively. Bacteria were isolated only Pseudomonas sp., and infected with 16.5%. In order to investigate the effect of disinfection on the temperature of hot water (45℃, 50℃, 55℃ and 60℃). The seed germination rate sharply decreased with increasing temperature and treatment time. The germination effect and germination rate of the follower were highest when hot water treatment was carried out for 20 minutes in hot water at 50℃. In the case of combined treatment of 50℃ hot water for 10 min and 0.4% pH adjusted lime sulfur mixture, showed the highest sterilization effect and germination rate with 100% and 97.6%, respectively. The results of this study can contribute to the development of technology to sterilize not only seed surface but also fungi and bacteria inside of seed.

Study on Hot Water Immersion Treatment for Control of Meloidogyne spp. and Pratylenchus spp. in a Ginger, Zingiber officinale (생강에서 뿌리혹선충과 뿌리썩이선충의 사멸을 위한 온탕침지처리 연구)

  • Cho, Donghun;Park, Kyonam;Kim, Yangho;Koh, Kyung-bong;Park, Youngjin
    • Korean journal of applied entomology
    • /
    • v.56 no.2
    • /
    • pp.171-177
    • /
    • 2017
  • Plant parasitic nematodes, Meloidogyne and Pratylenchus spp., are mostly detected in imported bulbs and tubers including a ginger, Zingiber officinale in Korea by quarantine inspection. However, there is little information on hot water immersion treatment (HWIT) for control of exotic nematodes, which induce economic loss by discard or send back to exporter, in imported gingers. In here, we determined that mortality of two plant parasitic nematodes and thermal stability of ginger. Meloidogyne and Pratylenchus spp. were completely killed at $48^{\circ}C$ and $49^{\circ}C$ for 30 sec by HWIT. Thermal conduction of Z. officinale to reach a target temperature as $50^{\circ}C$ take 10~32 min and 6~16 min for core and inner 5 mm region from surface, respectively. When ginger exposed at $51^{\circ}C$ for 30 min, growth of Z. officinale was not affected by heat treatment compared with control. Based on these results, HWIT at $51^{\circ}C$ for 30 min completely killed artificially infected juveniles of Meloidogyne spp. in Z. officinale. Therefore, this condition for HWIT will be used as fundamental information on phytosanitory to kill two plant parasitic nematodes without damage on ginger.

Evaluation of Hot Water Treatment for Disinfection of Vegetable Seeds for Organic Farming (채소 종자별 온탕침지 종자소독 효과검정)

  • Lee, Ji-Hyun;Shen, Shun-Shan;Park, Yong-Ju;Ryu, Kyung-Yul;Jee, Hyeong-Jin
    • Research in Plant Disease
    • /
    • v.13 no.3
    • /
    • pp.157-163
    • /
    • 2007
  • Hot water treatment that is the most appropriate seed disinfection method for organic vegetable farming was evaluated in this study. Among the leafy vegetable seeds lettuce that was the most sensitive to hot water was suitable to treat at $45^{\circ}C$ for 25 min, while Chinese cabbage and radish seeds were optimally treated at $50^{\circ}C$ for 25 min. The treatments resulted in similar or higher seed germination rate than non-treated seeds and promoted plant growth. In addition, fungi such as Alternaria, Aspergillus, Penicillium, or Mucor grown on the seeds were suppressed over 90% and the bacterial growth on lettuce seeds reduced 98.5% by the treatment. Among the fruit vegetable seeds pumpkin that was vulnerable to hot water was suitable to treat at $50^{\circ}C$ for 15 min, while cucumber and hot pepper seeds revealed optimum treatment at $50^{\circ}C$ for 25 min as chinese cabbage and radish. The treatment also showed similar or higher seed germination rate and growth than non-treated seeds. Furthermore, fungi such as Rhizopus, Aspergillus, Penicillium or Mucor grown on the seeds reduced from 72.0% to 95.4%. The bacterial growth on cucumber and red pepper seeds was suppressed from 65.5% to 86.0% by the treatment. Results indicated that the hot water treatment is practical for disinfection of organic vegetable seeds and the optimum temperature and soaking time varied among the seeds.

Assessment of Hot Water Treatment and Lime Sulfur Mixture on Germination and Disinfection Efficacy of Organic Wheat Seeds (온탕침지법과 석회유황합제 처리가 유기농 밀 종자의 발아와 소독효과 미치는 영향 평가)

  • Min-Jeong Kim;One-Sung Park;Chang-Ki Shim;Jae-Hyeong Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.371-382
    • /
    • 2023
  • This study aimed to estimate optimal treatment for enhancing the germination rate and disinfections effect of organic wheat varieties, Jokyung, Geumgang, Saegumgang, and Baekgang using hot water treatment and lime sulfur mixture. Before disinfection, the germination rates of the seeds averaged 86.3±2.5% to 87.5±2.9%, while the infection levels caused by fungi and bacteria were observed to be 22.5±2.9% to 38.3±2.5% and 18.8±4.8% to 23.8±2.5%, respectively. The germination rates of four wheat varieties under hot water treatments were either the same or higher compared to untreated seeds. As the temperature and treatment time of hot water treatment increased, the contamination levels of fungi and bacteria decreased. The optimal hot water treatment for the seeds was observed at 55℃ for 10 minutes, resulting in germination rates averaging 90.0±0.0% to 97.5±2.9%, which were either the same or higher than untreated seeds. The disinfection effectiveness against fungi and bacteria was high, averaging 83.3~93.5% and 100%, respectively. Additionally, an investigation was conducted on the germination rates and microbial disinfection efficacy of 0.2% and 0.4% lime-sulfur mixture with varying treatment times, 3 to10 minutes for each wheat variety. As the treatment time elapsed, no significant differences in germination rates were observed among four wheat varieties. However, the germination rates were higher compared to the untreated group (86.3~87.5%), and the optimal treatment time was found to be 7 minutes or 10 minutes, resulting in an average reduction of 90.0~96.0% in contamination levels of fungi and bacteria. Therefore, the germination rates and disinfection effects varied depending on the treatment conditions of hot water treatment and lime-sulfur mixture applied for the disinfection of the four varieties of organic wheat seeds. However, it is considered that treating the seeds with hot water treatment at 55℃ for 10 minutes or with 0.2% or 0.4% lime-sulfur compound for 10 minutes enhances germination rates and reduces the contamination rate of fungi and bacteria compared to untreated seeds. Thus, these environmentally friendly seed disinfection technologies are likely to be highly useful in agricultural fields.

Effect of Nematicide-dipping Methods for the Control of Aphelenchoides fragariae in Strawberry (살선충제 침지처리에 의한 딸기잎선충 방제)

  • Kim, Dong-Geun;Kang, Myeong-Won;Lee, Joong-Hwan
    • Korean journal of applied entomology
    • /
    • v.47 no.1
    • /
    • pp.101-105
    • /
    • 2008
  • Effects of different application of nematicides (fosthiazate 5% G, ethoprophos 5% G, and diazinon 34% EC) for the control of Aphelenchoides fragariae in strawberry were evaluated in a greenhouse experiments. Mother strawberry (Fragaria grandiflora) cv. Yeohong were dipped in solution of nematicides (fosthiazate or ethoprophos at 2.5 g a.i./liter in $20^{\circ}C\;or\;46^{\circ}C$) for 10 min. and planted in a greenhouse for dipping treatment. For the compare, mother strawberry were dipped in hot water for 10 min. without chemicals. For soil treatment, fosthiazate or ethoprophos at 3 kg a.i./ha were mixed into soil. For foliar spray, diazinon at 3.4 g a.i./liter was sprayed at foliage until runoff. At 40, 80, and 100 days after planting, runners were harvested from each treatment and the rate of nematode infestation and the number of nematodes per plant were examined. After 100 days of planting, mother strawberry plants dipped in fosthiazate solution (2.5 g a.i./liter, $20^{\circ}C$) for 10 min. produced more number of healthy runners and reduced % of infected runner as much as 90% and also had fewer nematodes per runner. Fosthiazate was more effective than ethoprophos. Foliar application of diazinon was reduced A. fragariae populations only in early season. Hot water treatment and nematicide soil treatment were less effective.

Analysis of Control Efficacy of Bacterial Fruit Blotch Caused by Acidovorax avenae subsp. citrulli in Recent Issues (최근 문제시 되는 수박 과일썩음병에 대한 방제효과 분석)

  • Back, Chang-Gi;Lee, Sung-Chan;Park, Mi-Jeoung;Han, Kyung-Sook;Kim, Hong-Ki;Lee, Yoon-Su;Park, Jong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.1
    • /
    • pp.41-46
    • /
    • 2016
  • Bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli is defective disease to watermelon cultivated areas. To control of BFB, we investigated control efficiency to use commercial antibacterial pesticides. Growth inhibition zone on medium were formed as oxolinic acid WP and oxytetracycline WP. Control efficacy of four anti-bacterial pesticides on seed and seedling stage were performed. As a results, oxytetracyclin WP is shown over 90% control efficiency on seed and acibenzolar-S-methyl + mancozeb WP shown over 90% control efficiency on seedling stage Hot-water treatment method could be possible to reduced infection rate on seed. The conditions of hot-water treatments are $50{\sim}55^{\circ}C$ on 20~30 minutes. These results suggested that the methods were helpful watermelon seedling nursery to control of the bacterial fruit blotch by A. avenae subsp. citrulli.

Effect of Rice Seed Disinfection of Loess-sulfur on the Suppression of Bakanae disease caused by Fusarium fujikuroi (벼 키다리병 방제에 관한 황토유황의 종자소독 효과)

  • So, Hyun-Kyu;Kim, Yong-Ki;Hong, Sung-Jun;Han, Eun-Jung;Park, Jong-Ho;Shim, Chang-Ki;Kim, Min-Jeong;Kim, Seok-Cheol
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.345-355
    • /
    • 2017
  • This study was conducted to evaluate rice seed disinfection efficacy of loess-sulfur for the suppression of Bakanae disease caused by Fusarium fujikuroi. Rice seeds were treated at different concentrations of loess-sulfur, soaking time and temperature, and combination of hot-water treatment. Rice cultivar, Shindongjin harvested from Bakanae disease-infested area in 2015, was used. Loess-sulfur was treated as follows; concentration of undiluted solution, 2%, 1% and 0.5%; soaking time of 24 and 48 hours; treatment temperature of $20^{\circ}C$ and $30^{\circ}C$; hot water treatment or not. Optimal conditions of rice seed disinfection were selected soaking time of 48 hours and the suspension of 0.5% and 1% loess-sulfur by investigating seed germination and isolation frequency of Fusarium spp. on Komada agar medium in vitro, and were established 3 disinfection conditions as hot water ($60^{\circ}C$, 10 min.) + 1% loess-sulfur ($20^{\circ}C$, 48 hours), 1% loess-sulfur only ($30^{\circ}C$, 48 hours) and 1% loess-sulfur only ($20^{\circ}C$, 48 hours) through additional test in greenhouse. Above 3 conditions were verified by rice seedling box and paddy field test in the way of investigating Bakanae diseased plants (%) and healthy plants (%). Consequently, most effective rice seed disinfection conditions on Bakanae disease were combination of hot water and 1% loess-sulfur and loess-sulfur only at $30^{\circ}C$. Furthermore, treatments with these conditions showed control value of 100% were maintained from seedling to the heading stage in the field. However, treatment of 1% loess-sulfur only at $20^{\circ}C$ showed low control value of 78.2% in paddy field. Hot water only treatment turned out to be an effective disinfection method when conducted thoroughly with $60^{\circ}C$, 10 min. However, it was thought additional soaking process with loess-sulfur after hot water treatment served more high control effect against Bakanae disease when rice seeds were disinfected on a large scale. This results expected rice seed disinfection with loess-sulfur were effectively and easily usable method if farmers had only one of either hot water-disinfector or seed-disinfector. In addition, loess-sulfur is well-known to farmers, simple to manufacture method and cheap.