• Title/Summary/Keyword: 온열 쾌적감

Search Result 72, Processing Time 0.026 seconds

Thermoregulation and Clothing Selection Behavior of the Sensitive Person to the Cold (추위에 민감한 사람의 체온조절반응과 의복선택행동)

  • 정운선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.2
    • /
    • pp.199-204
    • /
    • 2000
  • This study was conducted to investigate the thermoregulatory responses and wearing behavior of the cold-sensitive men when exposed to the mild cold of 14$^{\circ}C$. Two sessions of experiment were carried out and five healthy young men for the cold-sensitive group(CSG) and four healthy young for the cold-insensitive group(CIG) participated in the study as subjects CSG maintained rectal temperature lower than CIG due to their thicker clothing resulted in larger decrease of rectal temperature. CSG maintained skin temperatures higher than CIG. CSG felt cooler than CIG but wore thicker clothing for thermal comfort and this made keep their sensation warmer. These results were discussed in terms of autonomic and behavioral temperature regulation.

  • PDF

A study on characteristics of thermal comfort for artificial environmental experiment in winter (동계 인공환경실험에 의한 온열쾌적특성 연구)

  • 박종일;김경훈;정성일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.721-731
    • /
    • 1998
  • Recently, many researchers are studying the relation between thermal environment and human comfort. The purpose of this study was to obtain basic data which are necessary to determine the thermal comfort sensation and physiological responses for men in winter indoor environment. From January to February 1998, subject experiment was 40 times proceeded under twenty different conditions of air temperature and relative humidity with early-twenty male university students. We examined subjective evaluation, Electrocardiogram(ECG), Electroencephalogram(EEG) of subjects. The results of this study can be summarized as follows : The comfort zone of people in winter was achieved at Standard new effective temperature($SET^*$) $ 25.2^{\circ}C$, PMV range was obtained by Fanger's statistical calculation was -0.27<PMV<+0.62, TSV range obtained subjects vote was -0.76<TSV<+0.36. The largest difference of skin temperature was found at the calf area as air temperature changes. vote rate of human body presented calflongrightarrowheadlongrightarrowforearmlongrightarrowchestlongrightarrowabdo men in turn. Heart rate was decreased at low $SET^*$ and heart rate was increased at high $SET^*$ But there was no change at EEG.

  • PDF

Evaluation of Thermal Comfort during Sleeping in Summer - Part IV : Study on Indoor Temperature Conditions for Comfort Sleep - (여름철 수면시 온열쾌적감 평가 - 제4보 : 쾌적수면을 위한 실내온도 설정에 관한 연구 -)

  • Kum, Jong-Soo;Kim, Dong-Gyu;Park, Jong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.4
    • /
    • pp.307-312
    • /
    • 2007
  • This study was performed to evaluate sleep efficiencies and conditions for comfortable sleep based on the analysis of sleep efficiency and MST under four thermals conditions ($22^{\circ}C,\;24^{\circ}C,\;26^{\circ}C,\;30^{\circ}C$). Five female subjects who have similar life cycle and sleep patterns were participated for the sleep experiment. Their age was from 20 to 22 years old. They were healthy, and had regular sleep with consistent bed and wakeup time. It was checked whether they had a good sleep before the night of experiment. Experiments were performed in an environmental chamber using thermo-hygrostat. The physiological signal (EEG) for sleep stage were obtained from C3-A2 and C4-Al electrode sites. Sleep stages were classified, then SWS latency and SWS/TST were calculated for the evaluation for sleep efficiencies on thermal conditions. As results, mean skin temperature for comfort sleeping was $34.5{\sim}35.4^{\circ}C$. Considering sleep efficiency and mean skin temperature, indoor room temperature of upper limit was $28.1^{\circ}C$.

A Study on the Indoor Thermal Comfort of the House with Ondol Heating System of Korean Traditional Housing (전통온돌난방의 실내 온열환경 쾌적감 평가에 관한 연구)

  • Kang, Sang-Woo;Jeon, Ji-Hyeon;Kook, Chan
    • Journal of the Korean housing association
    • /
    • v.18 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • The principle of Korean Traditional Housing was to be harmonized with the nature with shapes according to regional climate and materials easily available from the region. These environmentally friendly characteristics protected indoor environment from climate changes. The characteristics of Korean traditional housing to control indoor environment would be very useful for contemporary housing in that current issues, improving housing amenity and wellbeing, had basic goals same with what Korean Traditional Housing had. Though it could be found characteristics of indoor thermal environment heated by Ondol Heating System, analyses of evaluation made by occupants of the rooms were insufficient because most of the studies had been focused on the measurement of indoor thermal factors. Thus, with an evaluation of occupants for the indoor thermal comfort and an estimation of discomfort derived from the result of vertical temperature distribution, it was studied whether the agreeable indoor range of rooms, of which was Jeonju Hanok Living Experience Center, heated by Ondol Heating System corresponded to the agreeable indoor range presented in references.

Relationships between Insensible Perspiration and Thermo Physiological Factors during Wearing Seasonal Clothing Ensembles in Comfort (쾌적한 상태에서 계절별 의복을 착용하고 있는 동안 불감증설과 온열 생리 요소들 간의 관련성)

  • Lee, Joo-Young;Choi, Jeong-Wha;Park, Joon-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.12
    • /
    • pp.1700-1709
    • /
    • 2007
  • The purpose of this study was to examine the relationships between thermo-physiological factors and the insensible loss of body weight(IL) of resting women wearing seasonal comfortable clothing. Air temperature was maintained at a mean of 22.5, 24.7, and 16.8 for spring/fall, summer and winter, respectively. We selected a total of 26 clothing ensembles(8 ensembles for spring/fall, 7 ensembles for summer, and 11 ensembles for winter). The results showed that 1) IL was $19{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for spring/fall environment, $21{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for summer, $18{\pm}6{\cdot}m^{-2}{\cdot}hr$ for winter(p<.001). 2) Insensible water loss through respiratory passage(IWR) showed the reverse tendency to IL. IWR was $6{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for winter and $5{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for summer. This difference was significant(p<.001). 3) The proportion of IWR out of whole insensible water loss(IW), had a mean of the mean 28% for summer and 38% for winter(p<.001). 4) In comfort, the heat loss by IW out of heat production had a mean of 25% for spring/fall, 27% for summer, and 23% for winter. 5) There was a weak negative correlation between It and clothing insulation/body surface area covered by clothing. 6) There were significant correlations between IL and air temperature$(T_a)$, air humidity$(H_a)$, energy metabolism, ventilation, mean skin temperature $\={T}_{sk})$ and clothing microclimate humidity$(H_{clo})$. However, the coefficients were less than 0.5. In conclusion, there were weak relationships between the IL and thermo-physiological factors. However, when subjects rested in thermal comfort, the IL was maintained in a narrow range even though the clothing insulation and air temperature were diverse.

Design of Optimal Vane Control for Ceiling Type Indoor Unit by PIV measurements (천장형 실내기의 기류 가시화를 통한 최적 제어 설계)

  • Sung Jaeyong;An Kwang Hyup;Lee Gi Seop;Choi Ho Seon;Park Seung-Chul;Lee In-Seop
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.533-536
    • /
    • 2002
  • A heating flow discharged from a 4-way ceiling type indoor unit has been investigated using a PIV(particle image velocimetry) system For the PIV measurements, an experimental model of 1/10 scale with a transparent room was devised by satisfying the Archimedes number, which is generally used in case that the forced convection has the similar magnitude as the natural convection. To optimize the heating flow, several vane angles and vane control algorithms of cross and right angle controls were considered. Regarding the vane angle, the experimental results show that it should be less than $30^{\circ}$ to avoid re-suction flows which decrease the performance of the air-conditioner. At the vane angle of $30^{\circ}$, applying open/close control gives nae to more uniform distribution of the heating flow than without control. Especially, the cross-control seems to be satisfactory for the thermal comfort.

  • PDF

Optimal air-conditioning system operating control strategies in summer (여름철 공조시스템의 최적 운전 제어 방식)

  • Huh, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.410-425
    • /
    • 1997
  • Buildings are mostly under part load conditions causing an inefficient system operation in terms of energy consumption. It is critical to operate building air-conditioning system with a scientific or optimal manner which minimizes energy consumption and maintains thermal comfort by matching building sensible and latent loads. Little research has been performed in developing general methodologies for the optimal operation of air-conditioning system. Based on this research motivation, system simulation program was developed by adopting various equipment operating strategies which are energy efficient especially for humidity control in summer. A numerical optimization technique was utilized to search optimal solution for multi-independent variables and then linked to the developed system simulation model within a mam program. The main goal of the study is to provide a systematic framework and guideline for the optimal operation of air-conditioning system focusing on air-side. For given cooling loads and ambient outdoor conditions the optimal operating strategies of a commercial building are determined by minimizing a constrained objective function by a nonlinear programming technique. Desired space setpoint conditions were found through evaluating the trade-offs between comfort and system power consumption. The results show that supply airflow rate and compressor fraction play main roles in the optimization process. It was found that variable setpoint optimization technique could produce lower indoor humidity level demanding less power consumption which will be benefits for building applications of humidity problem.

  • PDF

Physiological and Psychological Thermal Responses to Local Heating of the Human Body in a Cold Environment (한랭환경하에서 인체의 국소가온 자극이 온열생리.감각반응에 미치는 영향)

  • Shin, Jounghwa
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.10
    • /
    • pp.1745-1753
    • /
    • 2001
  • 본 연구는 한랭 환경 하에서의 인체의 국소 가온 자극이 생리, 감각반응에 끼치는 영향을 검토했다. 건강한 성인여자 7명을 대상으로, 기온 $25^{\circ}C$, 습도50%의 환경 하에서 균일한 국소 가온을 부하 했을 때 피부온, 고막온, 손가락, 발가락 혈류량, 온냉감, 쾌적감의 반응에 미치는 영향을 검토한 결과는 다음과 같다. 1) 국소가온에 의해 가온 부위 피부온은 유의하게 상승하고 가온 부위에 따라 상승도에는 유의한 차가 보였다. 2) 국소가온에 의해 고막온은 머리의 가온 시에 높은 상승, 전완의 가온 시에 상승하고, 다른 가온 부위에서는 하강의 경향이 보였다. 3) 국소가온에 의해 혈류량의 변화는 3개의 군으로 분류된다. 가온과 함께 손가락 혈류량이 증가하는 군, 발가락 혈류량이 변화하는 군, 양쪽의 혈류량이 적게 변화하는 군으로 나누어진다. 이것을 각 피험자의 평균 피부온 수준 즉 체온조절 수준과 관계 있는 것으로 논할 수 있다 4)국소 가온에 의해 각 부 위 피부온으로의 파급효과는 머리, 상완의 가온 시에 크지만 대퇴, 하퇴 다리의 가온 시에는 대부분의 부위에서 영향이 보이지는 않았다. 5) 이와 같이 국소 가온에 의 한 생리, 감각반응은 가온 부위에 따라 다르고 머리, 상완의 가온 시에는 생리반응이 크고 하퇴, 다리의 가온시에는 국소의 감각변화가 컸다.

  • PDF

Estimation of the thermal performance on the double slab floor with supplying air (급기가 되는 이중바닥 구조체의 열 성능 평가)

  • Cha, Kwang-Seok;Park, Myung-Sig;Lee, Dae-Woo;Nam, Woo-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.866-871
    • /
    • 2006
  • Recently according to the fashion of well-being, the case study of under floor heating system type for residential space is increasing. Specially double slab floor system can make several roles as reducing the acoustic noises and also supplying fresh air through the gap. So in present study floor heating performance was examined with various location of the space in the case of floor supply air and ceiling supply air. In both cases return air went out through ceiling opening. As one of the result is that when using the heat pipe type floor heating system the temperature difference between supply and return water was $15.2^{\circ}C$, but in case of commercial type floor heating system the temperature difference was $5.3^{\circ}C$ when the supply water temperature was $50^{\circ}C$.

  • PDF

Study on the Temperature Distribution of Cabin under Various Car Heating Modes (난방기 출력에 따른 철도차량 객실 내부 온도 분포 분석)

  • Cho, Youngmin;Yoon, Young-Kwan;Park, Duck-Shin;Kim, Tae-Wook;Kwon, Soon-Bark;Jung, Woo-Sung;Kim, Hee-Man
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.558-565
    • /
    • 2012
  • Abnormal climate or weather is more frequently reported nowadays due to the global climate change. Especially, extremely low temperature in winter season may cause bad thermal discomfort of passengers. In this study, the effect of car heating modes on cabin temperature change and distribution was studied by using a real-scale environmental chamber for passenger cabin. It was found that the cabin temperature rose quickly at the initial stage of heating system operation, but it stopped increasing after certain point. And, temperature was higher when the height from the floor was higher. Based on the obtained result, the way to minimize the decrease of passengers' thermal comfort was suggested.