• Title/Summary/Keyword: 온실가스 저감

Search Result 518, Processing Time 0.024 seconds

Development of ITM material and process for producing high purity oxygen (고순도 산소제조용 ITM 및 공정개발)

  • 김종기;성부용;박정훈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.365-369
    • /
    • 2003
  • 이산화탄소 규제 대응 전략으로, 배출되는 온실가스를 분리, 회수, 처리하는 연구가 지속적으로 진행되고 있다. 현재 이산화탄소 저감 연구는 공정개발 초기부터 이산화탄소 배출을 방지하거나 분리하기 쉬운 형태로 설계하는 방식으로 전환되고 있다. 그 예로 고온 순산소 연소 시스템이 제안되었다. 이는 $CO_2$를 가장 효과적으로 저감시키는 방법 중의 하나로 연소에 사용되는 산화제로 순산소를 사용하여 원료를 절감할 수 있고 산소를 사용하기 때문에 배가스 중에 질소분율이 감소하여 배가스에 의한 현열손실을 줄일 수 있으며 또한 배가스 현열을 회수하여 산소를 고온으로 예열시켜 에너지를 추가적으로 절감할 수 있다. 이를 위해 산소를 선택적으로 투과시켜 고순도 산소를 제조할 수 있을 뿐만 아니라 산소제조 장치비를 절감할 수 있는 ITM (Ion Transport Membrane) 신소재 및 산소 투과 공정을 개발하고자 한다.

  • PDF

Chemical Fixation of Carbon Dioxide with Methane (메탄에 의한 이산화탄소의 화학적 고정화)

  • 조영복;김상채;서성규;유의연
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.389-390
    • /
    • 2000
  • 최근 지구 온난화의 55% 이상을 차지하고 있는 이산화탄소를 유용한 화합물로 전환하고자 메탄을 환원제로 사용한 이산화탄소 개질반응으로부터 합성가스 생성에 관한 연구가 활발히 진행되고 있다. 메탄의 이산화탄소 개질반응은 수증기 개질반응보다 낮은 합성 가스비의 생성, 온실효과를 유발하는 이산화탄소의 저감, 반응의 높은 흡열도를 이용한 화학에너지 전송 시스템의 응용 면에서 그 의의가 있다. (중략)

  • PDF

Predicting the success of CDM Registration for Hydropower Projects using Logistic Regression and CART (로그 회귀분석 및 CART를 활용한 수력사업의 CDM 승인여부 예측 모델에 관한 연구)

  • Park, Jong-Ho;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.2
    • /
    • pp.65-76
    • /
    • 2015
  • The Clean Development Mechanism (CDM) is the multi-lateral 'cap and trade' system endorsed by the Kyoto Protocol. CDM allows developed (Annex I) countries to buy CER credits from New and Renewable (NE) projects of non-Annex countries, to meet their carbon reduction requirements. This in effect subsidizes and promotes NE projects in developing countries, ultimately reducing global greenhouse gases (GHG). To be registered as a CDM project, the project must prove 'additionality,' which depends on numerous factors including the adopted technology, baseline methodology, emission reductions, and the project's internal rate of return. This makes it difficult to determine ex ante a project's acceptance as a CDM approved project, and entails sunk costs and even project cancellation to its project stakeholders. Focusing on hydro power projects and employing UNFCCC public data, this research developed a prediction model using logistic regression and CART to determine the likelihood of approval as a CDM project. The AUC for the logistic regression and CART model was 0.7674 and 0.7231 respectively, which proves the model's prediction accuracy. More importantly, results indicate that the emission reduction amount, MW per hour, investment/Emission as crucial variables, whereas the baseline methodology and technology types were insignificant. This demonstrates that at least for hydro power projects, the specific technology is not as important as the amount of emission reductions and relatively small scale projects and investment to carbon reduction ratios.

A Study on Performance of Solid Oxide Fuel Cell System for Ship Applications (선박 전원용 고체산화물형 연료전지(SOFC) 시스템 성능에 관한 연구)

  • Park, Sang-Kyun;Roh, Gill-Tae;Kim, Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.582-589
    • /
    • 2011
  • The fuel cell technology has been considered as a technology to reduce greenhouse gases emission from a ship. In this research, internal reforming 500kW solid oxide fuel cell system fueled by methane for a ship were developed. Characteristics of gas temperature, stack power and system efficiency depending on the air flow rate, $CH_4$ flow rate, $H_2O$ flow rate, and system operation pressure are evaluated. As a result, air and $CH_4$ flow rate directly affect the temperature of inlet and outlet gas in the fuel cell stack. When the air and $H_2O$ flow rate increase, the stack power and system efficiency increases. However, the case of $CH_4$ flow rate increase, the efficiency decreases.

A Study on the Application of Hybrid Propulsion System for Fishing Vessels (어선용 복합 추진시스템 적용을 위한 연구)

  • Jung-Ho Noh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1238-1243
    • /
    • 2022
  • The International Maritime Organization is at the forefront of strengthening gas emission regulations for ships globally. The Korean government needs to apply measures to reduce emissions, such as setting a basic roadmap for greenhouse gas reduction. In addition, there is an urgent need to introduce a new efficient propulsion system that can reduce gas emissions. This includes applications to fishing vessels, which account for 90.6% of the greenhouse gas emissions from ships sailing along domestic coasts. In this study, an electric-combined propulsion system applicable to domestic coastal fishing vessels was developed. The target ship to which the electric-combined propulsion system could be applied was selected. A simulation system was constructed using MATLAB/Simulink to compare the expected fuel consumption when applying the developed complex electric propulsion system to the propulsion system mounted on the selected target fishing vessel. Through simulations, the differences in fuel consumption between the mechanical propulsion system and the electric hybrid propulsion system (both when charging and not charging the battery on land) were confirmed. The results show that fuel consumption can be decreased by approximately 13% and 16% when applying the electric-combined propulsion system.

Effect of the Bonus-Malus Policy upon Car Market Structure (자동차 시장구조에 따른 저탄소차협력금제도의 효과 변화)

  • Yi, Woo Pyeong
    • Journal of Environmental Policy
    • /
    • v.14 no.4
    • /
    • pp.23-44
    • /
    • 2015
  • The policy aimed at introducing a Bonus-Malus system to reduce GHG and raise the market share of small cars is scheduled to go into effect in South Korea in 2020. Although the policy was originally planned to be enforced from 2015, the Ministry of Trade, Industry and Energy argued that the system brings low reduction effect and relative disadvantage to domestic small cars and brought arguments in 2014. As a result, the enforcement was pushed back. Related studies are mainly focused on offering statistical estimation of the policy's effect to support the arguments, and few theoretical studies were published given that there was not enough time until 2015 back then. The author approached the issue with mathematical modeling in order to give theoretical basis for sophisticated empirical studies. If car suppliers have market power and strategically set their prices, the impact of Bouns-Malus on car prices would be lower than what was originally intended. In case only a part of the car market loses its market power, the effect of the policy would be improved. Assume that the Bonus-Malus is currently at an optimal level and the car market structure is undergoing changes, then the direction of the new optimal level would depend on the elasticity of demand of each market and substitute elasticity. For example, if the car market becomes more monopolistic while the demand for big cars is elastic, demand for small cars is inelastic and substitution elasticity is low, then the new optimal level of Bonus-Malus should be higher.

  • PDF

Analysis of Environmental Load by Work Classification for NATM Tunnels (NATM터널의 공종별 환경부하 특성 분석)

  • Lee, Ju-hyun;Shim, Jin Ah;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.307-315
    • /
    • 2016
  • Many countries are trying to reduce a greenhouse gas to step up their fight against climate change. There are many studies related to building only for reducing a greenhouse gas in construction area but studies related to reducing a comprehensive environmental load including various pollutants that affects the global environment are lacking. This study aims to analyse the characteristics of environmental load by work type for tunnel projects. Analysis showed that seven work types, including lining concrete, shotcrete, tunnel portal and open-cut tunnel work, etc., are representative works generated environmental load. These seven works represent 89.22 percent of total environmental load. In addition, comparison results of environmental load per tunnel's length by work type showed that a major factor of environmental load is caused by a tunnel portal and open-cut tunnel work with relatively short length (excavation length). And lining concrete and shotcrete work are larger than any other environmental load with tunnel's total length. It is expected that the result of this study will be used to make a estimation model for environmental load using approximate quantity survey of representative work types in the early stage of tunnel design. And it will be play a considerable role in establishing of environment management plan for sustainable infrastructure construction.

A Study of the Combination Method for Earthwork Equipments Using the Environmental Loads and Costs (토공사 환경오염물질 부하량 및 공사비를 이용한 장비조합방법 연구)

  • Kang, Min-Ho;Park, Hyung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1215-1224
    • /
    • 2013
  • Great efforts have been made worldwide to reduce the Green House Gas (GHG) emission following the "Kyoto Protocol" declared during the United Nations Framework Convention on Climate Change in 1997. Many industries have restructured to meet the standard set by the Protocol. However, no clear guidance has been established for the purpose of reducing the GHG emission in construction industry. In addition, no significant effort has been made to conserve the energy during construction activities. For more effective energy saving in construction industry, it is essential to collect data about energy consumption, quantity of environmental emissions and costs. However, most studies on sustainable construction have been concentrated on the use of equipment, maintenance and repair works during construction due to the difficulties of collecting such data. This study suggests a method to select the most environmentally friendly equipment combination for earthwork with comparing environmental loads and costs using the database of Life Cycle Inventory in the Ministry of Knowledge Economy and Ministry of Environment of Korea.

A Study on the impact of the changes in international emissions trade market on non-CO2 CDM projects (국제 배출권 거래 시장의 제도변화가 국내 비(非)CO2 CDM 사업에 미치는 영향 분석)

  • Lee, Eungkyoon;Hwang, Minsup;Lee, Myung-Kyoon
    • Environmental and Resource Economics Review
    • /
    • v.23 no.2
    • /
    • pp.157-185
    • /
    • 2014
  • The Kyoto Protocol has extended its life until 2020 by the decision at COP18 in Doha, Qatar in 2012. So has the Kyoto Mechanism of CDM, JI, and ETS. Nonetheless, the sustainability of CDM projects is jeopardized by the recent rule changes in the international emissions trade market such as EU ETS and the price decrease in emission credits. In particular, the domestic CDM projects reducing non-$CO_2$ GHG emissions are being directly affected. This study examines the trend of carbon credit price change in the international market. It also examines how the rule changes in the international emissions trade market have affected domestic non-$CO_2$ CDM projects through which mechanisms. The policy implications drawn from this study is two-fold: it suggests how the government can assist the project developers in utilizing GHG emission reduction technologies and the market in promoting investment environment before the domestic ETS enters into effect in 2015; apart from possible measures within ETS, an additional measures such as bilateral carbon offset system is suggested to help the private sector reduce uncertainty in investment and increase options to choose.

A Study of Economic Efficiency and Environmental Performance Due to the Conversion of the 7th and 8th Basic Plan for Long-term Power Supply and Demand (제7차 및 제8차 전력수급기본계획 전원 구성 전환에 따른 경제성 및 환경성 변화 분석 연구)

  • Cho, Sungjin;Yoon, Teayeon;Kim, Yoon Kyung
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.201-229
    • /
    • 2019
  • This paper estimates the effects of generation mix changes in the $7^{th}$ and $8^{th}$ Basic Plan for Long-term Power Supply and Demand from two aspects: economic efficiency through electricity prices and environmental performance through $CO_2$ and air pollutants(NOx, SOx, PM) emissions. Particularly, we examined additional generation mix conversion paths that take into account the trade-off between economic efficiency and environmental performance through scenario analysis. According to our results, the conversion from the $7^{th}$ plan to the $8^{th}$ plan should increase the electricity prices in the mid- and long-term, while reducing GHG and air pollutants emissions at the same time. The alternative generation mix that combines $7^{th}$ and $8^{th}$ plans shows that there exists a path to mitigate the trade-off between economic and environmental in the long-term. It will be next to impossible to derive a optimal generation mix that simultaneously considers the core values, such as supply stability, environmental performance, economic efficiency, energy safety and energy security, when establishing the power supply and demand plan. However, by exploring the effects of various generation mix paths and suggesting near-optimal paths, people can best choose their direction after weighhing all the paths when deciding on a forward-looking generation mix in the long term.