• Title/Summary/Keyword: 온실가스 배출

Search Result 1,284, Processing Time 0.038 seconds

Development of Greenhouse Gas Estimation Method for a Local Government Level Using Traffic Demand Model

  • Maurillo, Pennie Rose Anne R.;Jung, Hyeon-Ji;Lee, Seon-Ha;Ha, Dong-Ik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.114-128
    • /
    • 2013
  • Greenhouse gas emissions have been an important issue in different countries because of their effects on global warming. The government has to organize greenhouse gas reduction measures suitable to regional characteristics by establishing annual implementation plans and comprehensive policies based on the UNFCCC. The transportation sector is one of the major contributors of air pollution; hence increasing need to estimate current and future traffic emissions precisely. Under these circumstances, a number of emission models have been developed recently. However, current methods of estimation cannot carry out effective analyses because it does not reflect vehicle movement characteristics. This study aims to present a new method for calculating road traffic emissions in Goyang city. A travel demand model is utilized to carry out GHG emission estimates according the traffic data (fleet composition, vehicle kilometers travelled, traffic intensity, road type, emission factors and speed). This study evaluates two approaches to estimate the road traffic emissions in Goyang City: Pollution-Emis and the Handbook of Emission Factors for Road Transport (HBEFA v.3.1) which is representative of the "average speed" and the "traffic situation" model types. The evaluation of results shows that the proposed emission estimation method may be a good practice if vigilant implementation of model inputs is observed.

A Study on the Calculation of GHG Emission for Domestic Railroad Transport based on IPCC Guideline (IPCC 가이드라인을 이용한 국내 철도수송에 따른 온실가스 배출량 산정에 관한 연구)

  • Lee, Jae-Young;Kim, Yong-Ki;Lee, Cheul-Kyu;Rhee, Young-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.408-412
    • /
    • 2012
  • Recently, new climate change mechanism after 2020 year has been accepted with the parties, and so government is pushing ahead the GHG reduction policies to achieve the effective results. Especially, it is essential to enhance the role of railroad in the public traffic system as well as to develop new cars with high energy efficiency for the GHG reduction of transportation sector. Thus, the calculation method of GHG emission of railroad should be established to manage the emission continuously. In this study, the calculation method of GHG emission of railroad was defined with Tier level considering its emission sources to refer to 2006 IPCC guideline for national GHG inventories. Also, the GHG emission of railroad at Tier 1 level was investigated using the activity data related to the amount of diesel and electricity consumption from 2008 to 2010. As a result, total GHG emission in 2010 was about 2,060 thousands ton CO2e, which have 73% of electricity and 27% of diesel. In future, the plans on the GHG reduction of railroad will be accomplished by the analysis of the detailed trends on the basis of the emission management of Tier 3 level under operating patterns. Therefore, it is important to develop the specific GHG emission factors of railroad in advance.

A Study on the Improvement of GHG Inventory in Agriculture and Forestry Categories of Energy Sector (에너지분야 농림업부문 온실가스 인벤토리 고도화 방안 연구)

  • Cheu, Sungmin;Moon, Jihye;Kim, Yeanjung;Sung, Jae-hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.294-304
    • /
    • 2019
  • Abstract Greenhouse Gas (GHG) emissions from agriculture and forestry sources in the energy sector have been estimated based on a top-down approach, which is an efficient way to estimate GHG emissions with the limited number of emission factors and activity data. On the other hand, for GHG abatement policies, more detailed information and data on GHG emissions are required. This study discusses how to improve the estimates of GHG emissions from the agricultural and forestry sources in the energy sector. To this end, this paper reviews the current estimation method of GHG emissions and presents three suggestions to enhance the current method. First, the development of country specific emission factors and corresponding activity data is proposed based on the 2006 IPCC Guidelines, National Greenhouse Gas Inventory Reports from other countries, and Domestic Statistics. Second, the uncertainty in CO2 emissions from agriculture in energy sector based on 2006 IPCC Guidelines is estimated, and ways of reducing the uncertainty in CO2 emissions are suggested. Finally, a potential way to reflect the GHG emissions from the use of renewable energy is suggested.

A Study on Estimation of the Greenhouse Gas Emission from the Road Transportation Infrastructure Using the Geostatistical Analysis -A Case of the Daegu- (공간통계기법을 이용한 도로교통기반의 온실가스 관한 연구 -대구광역시를 대상으로-)

  • Lee, Sang Woo;Lee, Seung Wook;Lee, Seung Yeob;Hong, Won Hwa
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • This study was intended to reliably predict the traffic green house gas emission in Daegu with the use of spatial statistical technique and calculate the traffic green house gas emission of each administrative district on the basis of the accurately predicted emission. First, with the use of the traffic actually surveyed at a traffic observation point, and traffic green house gas emission was calculated. Secondly, on the basis of the calculation, and with the use of Universal Kriging technique, this researcher set a suitable variogram modeling to accurately and reliably predict the green house gas emission at non-observation point suitable through spatial correlation, and then performed cross validation to prove the validity of the proper variogram modeling and Kriging technique. Thirdly, with the use of the validated kriging technique, traffic green gas emission was visualized, and its distribution features were analyzed to predict and calculate the traffic green house gas emission of each administrative district. As a result, regarding the traffic green house gas emission of each administration, it was found that Bukgu had the highest green house gas emission of $291,878,020kgCO_2eq/yr$.

Comparison of Direct and Indirect $CO_2$ Emission in Provincial and Metropolitan City Governments in Korea: Focused on Energy Consumption (우리나라 광역지방자치단체의 직접 및 간접 $CO_2$ 배출량의 비교 연구: 에너지 부문을 중심으로)

  • Kim, Jun-Beum;Chung, Jin-Wook;Suh, Sang-Won;Kim, Sang-Hyoun;Park, Hung-Suck
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.874-885
    • /
    • 2011
  • In this study, the urban $CO_2$ emission based on energy consumption (Coal, Petroleum, Electricity, and City Gas) in 16 provincial and metropolitan city governments in South Korea was evaluated. For calculation of the urban $CO_2$ emission, direct and indirect emissions were considered. Direct emissions refer to generation of greenhouse gas (GHG) on-site from the energy consumption. Indirect emissions refer to the use of resources or goods that discharge GHG emissions during energy production. The total GHG emission was 497,083 thousand ton $CO_2eq.$ in 2007. In the indirect GHG emission, about 240,388 thousand ton $CO_2eq.$ was occurred, as 48% of total GHG emission. About 256,694 thousand ton $CO_2eq.$ (52% of total GHG emissions) was produced in the direct GHG emission. This amount shows 13% difference with 439,698 thousand ton $CO_2eq.$ which is total national GHG emission data using current calculation method. Local metropolitan governments have to try to get accuracy and reliability for quantifying their GHG emission. Therefore, it is necessary to develop and use Korean emission factors than using the IPCC (Intergovernmental Panel on Climate Change) emission factors. The method considering indirect and direct GHG emission, which is suggested in this study, should be considered and compared with previous studies.

Application of LEAP Model to Reduce GHG Emissions from Residential Sector (LEAP 모형을 이용한 가정 부문 온실가스 저감효과 분석)

  • Jo, Mi-hyun;Park, Nyun-Bae;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.211-219
    • /
    • 2013
  • This study uses the LEAP model that is a long-term energy analysis model to analyze reduction potential on S city residential sector energy usage for greenhouse gas emission. Energy consumption of S-si in 2009 is consumed most in residential and commerce sector by 39.1%. Also, energy and greenhouse gas emission of residential sector is expected to increase due to increase of households. Therefore, greenhouse gas reduction measures are desperately required in residential sector. For this study recognizes energy consumption of S-si residential sector and has established reduction measure of S-si residential sector greenhouse gas through literature search on domestic and foreign climate change correspondence policies. Also, construction of greenhouse gas reduction potential by reduction measures through LEAP model. There were a total of 5 reduction measures scenarios is Reference Scenario, LED Lighting, Energy Alternative, Green Life Practice, and Total Reduction Measure. As a result, greenhouse gas emission of Light Emitting Diode Lightings by 2020 was $1,181.0thousand\;tonCO_2eq$, decrease of 6.1% compared to the Reference Scenario and Greenhouse gas emission of Energy Alternative by 2020 was $1,171.6thousand\;tonCO_2eq$, decrease of 6.8% compared to the Reference Scenario. Greenhouse gas emission of Green Life Practice by 2020 was $1,128.7thousand\;tonCO_2eq$, decrease of 10.2% compared to the Reference Scenario. For Total Reduction Measures by 2020 emission was $966.9thousand\;tonCO_2eq$, decrease 23.1% compared to Reference Scenario.

International Greenhouse Gas Emission Trading: A Review and Prospect (국제 온실가스 배출권거래제도에 대한 대응 방향)

  • Jo, Yong-Seong;Kim, Yong-Geon
    • Environmental and Resource Economics Review
    • /
    • v.9 no.1
    • /
    • pp.183-208
    • /
    • 1999
  • 교토의정서 제17조에 규정된 국제 온실가스 배출권거래제(IET)는 온실가스 감축의무가 있는 국가에 배출쿼터를 부여한 후, 동 국가간에 배출쿼터의 거래를 허용하는 제도로서, 최소의 비용으로 감축목표를 달성할 수 있는 장점을 가지고 있다. 현재 IET의 디자인과 관련하여 논쟁이 되고 있는 주요 이슈는 거래참가자의 대상 및 자격조건, 거래책임, 거래의 한계설정과 자연발생 잉여배출권 (Hot Air)의 인정여부 등이며 미국, 일본 중심의 JUSSCANZ그룹과 EC/동구권 국가들간에 이견을 보이고 있다. 향후 COP5와 COP6의 협상결과에 따라 IET의 모습도 달라질 것으로 전망되며, 경우에 따라서는 우리 나라가 감축의무를 부담할 시는 물론이고 그 이전이라도 IET를 활용하여 기업의 이윤을 제고시킬 수도 있을 것으로 판단된다. 이에 따라 IET에 대한 국가차원의 장기적인 전략수립이 필요하며 이를 위해서는 첫째, 교토메카니즘과 관련된 협상과정에서의 전략적 대웅이 필요하며, 둘째, IET 관련 해외정보의 신속한 수집, 전파 및 기업홍보를 통한 효율적 활용, 마지막으로는 시범적인 국내 온실가스 배출권거래제 도입 검토 및 기반구축이 필요하다.

  • PDF

Estimation of Greenhouse Gas Emissions from Korean Livestock During the Period 1990~2013 (1990년부터 2013년까지 우리나라 축산부문 온실가스 배출량 평가)

  • Kim, Minseok;Yang, Seung-Hak;Oh, Young Kyoon;Park, Kyu-Hyun
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.383-390
    • /
    • 2016
  • According to the "Framework Act on Low Carbon, Green Growth", publication of annual national greenhouse gas (GHG) inventory report is mandatory. This annual GHG inventory report is used as basal data for GHG mitigation strategies. In the livestock sector, GHG emission trends from year 1990 to 2013 were estimated based on the 1996 IPCC guidelines with the Tier 1 methodology. GHG emissions from the livestock sector in 2013 were 9.9 million tons $CO_2-eq$., where emissions from enteric fermentation were 4.4 million tons $CO_2-eq$, increased by 47.4% over 1990 mainly due to the increase in non-dairy cattle population. On the other hand, GHG emissions from livestock manure in 2013 were 5.5 million tons $CO_2-eq$, increased by 75.5% over 1990 mainly due to the increase in non-dairy cattle, swine and poultry populations. Additional research is required to develop country-specific emission factors to estimate GHG emissions precisely from livestock in South Korea.

네트워크 단말 및 데이터 센터의 에너지 절감을 위한 그린 네트워킹 표준기술 동향

  • Jeong, Sang-Jin;Kim, Yong-Un;Kim, Hyeong-Jun
    • Information and Communications Magazine
    • /
    • v.29 no.6
    • /
    • pp.41-46
    • /
    • 2012
  • 전 세계적으로 에너지 소모량 절감 및 온실가스 배출 감소가 중요한 문제로 대두되고 있으며, 온실가스 배출 절감을 목표로 다양한 노력을 기울이고 있다. 우리나라도 2020년까지 국가 온실가스 감축목표를 2005년 대비 4% 감축하는 것으로 설정하고 정책입안, 기술개발 등 다양한 노력을 경주하고 있다. 연구결과에 따르면 ICT 산업은 세계 온실가스 배출량의 2%를 차지하고 있으며, 지속적으로 증가추세에 있는 것으로 조사되었다. 또한, ICT 산업이 세계 온실가스 배출량의 최대 30%를 절감할 수 있는 가능성을 내재하고 있는 것으로 조사됨에 따라, ICT 산업, 특히 네트워크 분야에서의 에너지 절감을 위한 노력의 필요성이 크게 부각되고 있다. 그린 네트워킹 기술은 ICT 분야의 핵심인 네트워킹 분야 중 에너지 효율적인 네트워킹 기술 개발을 위한 분야로, 기존 네트워킹 기술과 동일한 성능을 나타내지만 에너지를 더 적게 사용하는 네트워킹 기술을 개발하는 것을 목표로 한다. 그린 네트워킹 기술은 단말 기술, 액세스 망 기술, 백본 망 기술로 세분화 될 수 있다. 본 논문에서는 네트워크 에너지 사용량의 많은 비중을 차지하는 가입자 네트워크와 가입자 네트워크와 데이터 센터의 에너지 효율을 향상시키기 위한 기술 동향에 대해 살펴보고 국내외의 관련 표준화 기구의 표준개발 동향을 살펴본다.

Changes in Emissions of Highway Sections according to the GHG Reduction Target (온실가스 감축목표에 따른 고속도로 구간 배출량 변화 연구)

  • Choi, Seonghun;Chang, Hyunho;Yoon, Byungjo
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.849-856
    • /
    • 2020
  • Purpose: Greenhouse gases are one of the major causes of global warming, a global disaster. It aims to improve how effective the GHG reduction policy, which is the main cause of global warming in the transportation sector, has been effective on the highway and how to calculate GHG emissions. Method: Using the DSRC raw data, we estimate the emissions of Namhae Expressway (Yeongam-Suncheon) from 2017 to 2019 in two ways, a macro method (conventional) and a micro method (individual vehicle). Result: As a result of calculating the emission of the highway, the result was far exceeding the estimated emission, and it was found that when the calculation was performed for each vehicle, it was underestimated by more than 20%. Conclusion: If more emissions are continuously emitted than expected in the current transportation sector, additional emission reduction policies are needed to achieve the current greenhouse gas reduction targets. In addition, in the calculation of emissions, which is the basis of this policy, analysis was conducted for each individual vehicle using the current DSRC raw data, but using GPS afterwards will enable precise emission calculation through a more microscopic analysis.