• 제목/요약/키워드: 온라인 자동평가 시스템

검색결과 55건 처리시간 0.023초

KOMUChat : 인공지능 학습을 위한 온라인 커뮤니티 대화 데이터셋 연구 (KOMUChat: Korean Online Community Dialogue Dataset for AI Learning)

  • 유용상;정민화;이승민;송민
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.219-240
    • /
    • 2023
  • 사용자가 만족감을 느끼며 상호작용할 수 있는 대화형 인공지능을 개발하기 위한 노력이 이어지고 있다. 대화형 인공지능 개발을 위해서는 사람들의 실제 대화를 반영한 학습 데이터를 구축하는 것이 필요하지만, 기존 데이터셋은 질문-답변 형식이 아니거나 존대어를 사용하여 사용자가 친근감을 느끼기 어려운 문체로 구성되어 있다. 이에 본 논문은 온라인 커뮤니티에서 수집한 30,767개의 질문-답변 문장 쌍으로 구성된 대화 데이터셋(KOMUChat)을 구축하여 제안한다. 본 데이터셋은 각각 남성, 여성이 주로 이용하는 연애상담 게시판의 게시물 제목과 첫 번째 댓글을 질문-답변으로 수집하였다. 또한, 자동 및 수동 정제 과정을 통해 혐오 데이터 등을 제거하여 양질의 데이터셋을 구축하였다. KOMUChat의 타당성을 검증하기 위해 언어 모델에 본 데이터셋과 벤치마크 데이터셋을 각각 학습시켜 비교분석하였다. 그 결과 답변의 적절성, 사용자의 만족감, 대화형 인공지능의 목적 달성 여부에서 KOMUChat이 벤치마크 데이터셋의 평가 점수를 상회했다. 본 연구는 지금까지 제시된 오픈소스 싱글턴 대화형 텍스트 데이터셋 중 가장 대규모의 데이터이며 커뮤니티 별 텍스트 특성을 반영하여 보다 친근감있는 한국어 데이터셋을 구축하였다는 의의를 가진다.

프로그래밍 언어 학습 시스템에서 객관식 문제의 난이도 균등화 알고리즘에 대한 연구 (A Study on Difficulty Equalization Algorithm for Multiple Choice Problem in Programming Language Learning System)

  • 김은정
    • 컴퓨터교육학회논문지
    • /
    • 제22권3호
    • /
    • pp.55-65
    • /
    • 2019
  • 플립러닝 방식의 프로그래밍 언어 학습 시스템에서 사이버 강의에 대한 평가는 일반적으로 온라인에서 객관식 문제로 진행된다. 이때 출제되는 문제는 문제은행에서 랜덤하게 추출하여 학습자 개개인에게 주어진다. 이러한 평가 결과가 성적에 반영되기 위해서는 시험 문제의 형평성이 무엇보다 중요하다. 특히 프로그래밍 언어 과목에서는 문제의 유형에 따라 학습자가 생각하는 난이도가 서로 다를 수 있다. 본 논문에서는 객관식 문제의 유형을 2가지로 분류하여, 각 유형별로 난이도를 관리한다. 그리고 문제의 난이도와 유형을 함께 고려한 문제 출제 알고리즘을 제시하였다. 제시된 알고리즘은 프로그래밍 언어 과목의 특성을 고려할 때 기존의 출제 방식에 비해 보다 공정하고 효율적임을 실험을 통해 확인할 수 있었다.

망각곡선과 대결 기반 순위 결정 시스템을 적용한 영어 단어 학습 어플리케이션 개발 (English Vocabulary Learning Application Development Applying Forgetting Curve and Match Result Based Rating System)

  • 염기호;오경수;전영재
    • 한국게임학회 논문지
    • /
    • 제15권3호
    • /
    • pp.151-160
    • /
    • 2015
  • 본 논문에서는 망각곡선을 응용한 반복학습시기 설정 및 학습자 수준과 단어 난이도 자동계산 방법이 적용된 영어단어 암기시스템을 소개한다. 우리 시스템은 망각곡선을 사용해서 학습자의 단어암기 횟수에 따라 적절한 반복 주기를 정하고 그 시기에 복습을 요구한다. 학습자가 알고 있는 단어들에 대한 복습시간을 없애고 잊어버릴 확률이 가장 높은 단어들을 우선 적으로 복습하는 것으로 시간을 절약 할 수 있는 것이다. 또 수준에 맞는 난이도의 단어들을 제공함으로써 학습 흥미와 성취도 유지에 기여할 수 있다. 학습자의 수준을 고려하지 않은 난이도의 단어를 무작위로 제공하거나 이미 다른 사람들의 평가에 맞춰진 난이도의 단어들을 제공하는 기존의 시스템과 차별되도록 학습자와 단어 난이도 설정에 온라인 체스게임 랭킹시스템에서 사용하고 있는 "Glicko" 시스템을 적용시켰다. 플레이어간의 대결을 통해서 서로의 실력이 결정되고 매칭되는 이 시스템을 우리는 단어와 사람간의 대결로 시스템에 적용하였다. 그것으로 인해 학습하는 사람의 수준과 단어들의 난이도가 실시간으로 측정되고 학습과정에 반영이 된다. 이 외에 부가적으로 분산학습, 시험형식의 문제풀이의 즉각적인 피드백을 활용하여 영어 단어 암기의 효율성을 극대화 한다.

지하시설물정보 자동갱신을 위한 준공도서 제출 표준DB 설계 연구 (A Study of the DB Design Standard for Submitting Completion Drawings for Auto-Renewal of Underground Facility Information)

  • 박동현;장용구;류지송
    • 한국측량학회지
    • /
    • 제38권6호
    • /
    • pp.681-688
    • /
    • 2020
  • 지하공간통합지도는 지하안전관리 강화를 목표로 한 「지반침하 예방대책」의 일환으로 '15년 시범구축사업부터 현재까지 구축을 지속하고 있다. 구축된 지하공간통합지도는 행정망 기반의 지하정보 활용시스템을 통한 지자체 담당자 제공, 도면 기반의 지도추출을 통한 지하안전영향평가 전문기관 제공 등으로 활용이 이루어지고 있다. 그러나 별도의 갱신사업이 추진되지 않아 구축된 당시의 정보로만 제공되고 있어 활용에 한계가 있다. 이러한 문제를 해결하고자 「지하안전관리에 관한 특별법」제42조제2항에서는 변동, 갱신이 발생하는 지하정보에 대한 준공도서 제출 의무화에 대한 내용이 명시되어 있으나, 제출 창구가 행정망 기반으로 운영되어, 제출이 미흡한 실정이다. 이에, 국토교통부에서는 온라인 기반의 준공도서제출시스템 구축을 추진하여, 지하개발사업자가 직접 준공도서를 제출하는 형태로의 변화를 꾀하였다. 본 연구에서는 제출되는 준공도서 기반의 갱신자동화 체계 구현을 위해 준공도서 제출에 대한 표준DB를 설계·적용하였으며, 향후, 지하구조물까지 범위를 확대할 예정이다.

A Study on the Development of a Problem Bank in an Automated Assessment Module for Data Visualization Based on Public Data

  • HakNeung Go;Sangsu Jeong;Youngjun Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권5호
    • /
    • pp.203-211
    • /
    • 2024
  • 프로그래밍 언어를 활용한 데이터 시각화는 처리하는 데이터 양, 처리 시간, 유연성에서 효율성과 효과성을 향상시킬 수 있으나 프로그래밍에 익숙해지기 위해 연습이 필요하다. 이에 본 연구에서는 프로그래밍 자동 평가 시스템에서 데이터 시각화를 연습하기 위한 공공데이터 기반 문제은행을 개발하였다. 공공데이터는 교육과정에서 제시한 주제로 수집하였으며 학습자가 데이터 시각화하기에 적절한 형태로 가공하였다. 문제는 다양한 데이터 시각화 방법을 학습하기 위해 수학교육과정과 연계하여 개발하였다. 개발한 문제는 전문가 검토 및 파일럿 테스트를 실시하였으며 문항의 수준, 데이터 시각화를 통한 수학 교육의 가능성을 확인하였다. 하지만 학생에게 흥미가 떨어지는 주제라는 의견을 받았으며 이를 보완하기 위해 학생이 중심이 되는 데이터를 활용하여 추가로 문항을 개발하였다. 개발한 문제 은행은 초등학교 정보영재 또는 중학교 이상에서 파이썬을 학습한 경험이 있는 학생이 데이터 시각화를 배울 때 활용될 수 있을 것으로 기대된다.

신호교차로 내 실시간 교통사고 자동검지 알고리즘 개발 (Development of the Algorithm for Traffic Accident Auto-Detection in Signalized Intersection)

  • 오주택;임재극;황보희
    • 대한교통학회지
    • /
    • 제27권5호
    • /
    • pp.97-111
    • /
    • 2009
  • 영상기반의 교통정보수집시스템은 관리 및 운영상의 한계를 보이고 있는 기존의 루프검지기의 역할을 대체하는 검지기로써의 역할뿐만 아니라 다양한 교통류의 정보를 제공하고 관리할 수 있다는 점에서 여러 나라에서 보급 활용되기 시작했다. 또한 용도와 사용범위에 있어서도 획기적인 확장세에 있다. 반면에 교통사고 관리와 관련하여 현재까지는 단순히 교통사고 예상지역에 감시카메라를 설치해 두고 기록되는 자료의 디지털화를 추진하는 정도의 영상처리기술을 활용하고 있는 형편이다. 교차로 내 교통사고의 발생 전과 후의 순차적인 상황을 정확히 기록하고, 이 자료를 통해 발생된 교통사고의 사고 매커니즘을 객관적이고 명확하게 조명하고 분석하는 것은 교통사고 처리에 있어서 어느 것보다 시급하고 중요한 부분이다. 기존 기술들은 교차로의 환경적 다양한 변화로 인해 극복하기 매우 어려운 차량의 객체분리, 추적 등의 기술을 가지고 있음에도 불구하고 엄청난 데이터처리용량으로 실시간으로 적용하기 어려운 문제들을 갖고 있다. 이에 본 연구는 이를 극복할 수 있는 기술 방식을 제시하고자 한다. 또한 기존에 잘 알려진 환경적 장애요소 제거방식 중 가장 우수한 방식으로 평가받고 있는 가우시안 복합모델 분석기법에서 조차 환경적인 요인으로 인해 자주 발생하고 있는 오 검지 상황들을 효과적으로 저감시킬 수 있는 능동적이고 환경적응적인 기법을 제시하고 구현하여 그 기술의 성능을 평가하고자 한다. 기존의 교통사고자동기록장치와 비교해 본 연구의 결과가 비교우위의 성능을 구현하였음을 입증하기 위해 실제 운용되고 있는 신호교차로의 영상을 실시간 온라인으로 입력받아 시험하였으며 이 시험결과를 기존의 다른 기술의 성능과 비교평가를 실시하였다.

연관 규칙과 협력적 여과 방식을 이용한 추천 시스템 (Recommender System using Association Rule and Collaborative Filtering)

  • 이기현;고병진;조근식
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 춘계학술대회 논문집
    • /
    • pp.265-272
    • /
    • 2002
  • 기존의 인터넷 웹사이트에서는 사용자의 만족을 극대화시키기 위하여 사용자별로 개인화 된 서비스를 제공하는 협력적 필터링 방식을 적용하고 있다 협력적 여과 기술은 비슷한 선호도를 가지는 사용자들과의 상관관계를 기반으로 취향에 맞는 아이템을 예측하여 특정 사용자에게 추천하여준다. 그러나 협력적 필터링은 추천을 받기 위해서 특정 수 이상의 아이템에 대한 평가를 요구하며, 또한 전체 사용자에 대해 단지 비슷한 선호도를 가지는 일부 사용자 정보에 의지하여 추천함으로써 나머지 사용자 정보를 무시하는 경향이 있다. 그러나 나머지 사용자 정보에도 추천을 위한 유용한 정보가 숨겨져 있다. 우리는 이러한 숨겨진 유용한 추천 정보를 발견하기 위하여 본 논문에서는 협력적 여과 방식과 함께 데이터 마이닝(Data Mining)에서 사용되는 연관 규칙(Association Rule)을 추천에 사용한다. 연관 규칙은 한 항목 그룹과 다른 항목 그룹 사이에 존재하는 연관성을 규칙(Rule)의 형태로 표현한 것이다. 이와 같이 생성된 연관 규칙은 개인 구매도 분석, 상품의 교차 매매(Cross-Marketing), 카탈로그 디자인, 염가 매출품(Loss Leader)분석, 상품 진열, 구매 성향에 따른 고객 분류 다양하게 사용되고 있다. 그러나 이런 연관 규칙은 추천 시스템에서 잘 응용되지 못하고 있는 실정이다. 본 논문에서 우리는 연관 규칙을 추천 시스템에 적용해, 항목 그룹 사이에 연관성을 유도함으로써 추천에 효율적으로 사용할 수 있음을 보였다. 즉 전체 사용자의 히스토리(History) 정보를 기반으로 아이템 사이의 연관 규칙을 유도하고 협력적 여과 방식과 함께 보조적으로 연관 규칙을 추천을 위해 사용함으로써 추천 시스템에 효율성을 높였다. 구축, 각종 전자문서 생성, 전자 결제, 온라인 보험 가입, 해운 선용품 판매 및 관련 정보 제공 등 해운 거래를 위한 종합적인 서비스가 제공되어야 한다. 이를 위해, 본문에서는 e-Marketplace의 효율적인 연계 방안에 대해 해운 관련 업종별로 제시하고 있다. 리스트 제공형, 중개형, 협력형, 보완형, 정보 연계형 등이 있는데, 이는 해운 분야에서 사이버 해운 거래가 가지는 문제점들을 보완하고 업종간 협업체제를 이루어 원활한 거래를 유도할 것이다. 그리하여 우리나라가 동북아 지역뿐만 아니라 세계적인 해운 국가 및 물류 ·정보 중심지로 성장할 수 있는 여건을 구축하는데 기여할 것이다. 나타내었다.약 1주일간의 포르말린 고정이 끝난 소장 및 대장을 부위별, 별 종양개수 및 분포를 자동영상분석기(Kontron Co. Ltd., Germany)로 분석하였다. 체의 변화, 장기무게, 사료소비량 및 마리당 종양의 개수에 대한 통계학적 유의성 검증을 위하여 Duncan's t-test로 통계처리 하였고, 종양 발생빈도에 대하여는 Likelihood ration Chi-square test로 유의성을 검증하였다. C57BL/6J-Apc$^{min/+}$계 수컷 이형접합체 형질전환 마우스에 AIN-76A 정제사료만을 투여한 대조군의 대장선종의 발생률은 84%(Group 3; 21/25례)로써 I3C 100ppm 및 300ppm을 투여한 경우에 있어서는 각군 모두 60%(Group 1; 12/20 례, Group 2; 15/25 례)로 감소하는 경향을 나타내었다. 대장선종의 마리당 발생개수에 있어서는 C57BL/6J-Apc$^{min/+}$계 수컷 이형접합체 형질전환 마우스에 AIN-76A 정제사료

  • PDF

웹기반 지능형 기술가치평가 시스템에 관한 연구 (A Study on Web-based Technology Valuation System)

  • 성태응;전승표;김상국;박현우
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.23-46
    • /
    • 2017
  • 2000년대 이전부터 북미 유럽의 선진국을 중심으로 특정 기업이나 사업(프로젝트)에 관한 가치를 평가하는 사례는 있어 왔으나, 개별 기술(특허)의 경제적 가치를 산정하는 체계나 방법론은 국내를 중심으로 최근 들어 활성화되어 왔다. 이러한 기술가치평가 분야는 기술이전(거래), 현물출자, 사업타당성 분석, 투자유치, 세무/소송 등의 다양한 용도로 활용되고 있다. 물론 기술보증기금의 KTRS, 발명진흥회의 SMART 3.1과 같이, 평가대상기술에 대한 기술력(등급) 평가 혹은 특허등급평가를 정성적으로 수행하는 온라인 시스템은 존재해 왔으나, 대상기술의 정량적인 가치금액까지 산출해 주는 웹기반 지능형 기술가치평가 시스템은 한국과학기술정보연구원(KISTI)에 의해 유일하게 개발 및 공식 오픈되어 확산 활용되고 있다. 본 고에서는 KISTI에서 개발 운영중인 웹기반 'STAR-Value' 시스템을 중심으로, 탑재된 방법론 및 평가모델의 유형, 이를 지원하는 참조정보 및 데이터베이스(D/B)가 어떻게 연계 활용되는지를 소개한다. 특히 미래에 발생할 경제적 수익을 추정하여 현재가치화하는 소득접근법 기반의 대표 모델인 현금흐름할인(DCF) 모델과 특정 로열티율을 기반으로 로열티수입료의 현재가치를 기술료 대가로 산정하는 로열티절감모델을 포함한 6개 모델, 그리고 관련 지원정보(기술수명, 기업(업종)재무정보, 할인율, 산업기술요소 등)의 데이터 기반 연계 방식에 대해 살펴본다. STAR-Value 시스템은 평가대상기술에 대한 국제특허분류(IPC) 혹은 한국표준산업분류(KSIC) 등의 분류 정보로부터 기술순환주기(TCT) 지수, 유사업종(혹은 유사기업)의 매출액 성장률 및 수익성 데이터, 업종별 가중평균자본비용(WACC) 및 산업기술요소 지수 등 메타데이터값을 자동적으로 불러오고 여기에 조정요인을 반영하여 기술가치의 산출결과가 높은 신뢰성 및 객관성을 가지도록 한다. 나아가 대상기술의 잠재적 시장규모와 해당 사업화주체의 시장점유율에 대한 정보까지 보유 재무데이터 기반으로 참조값을 제시하거나 기존에 완료된 평가사례 축적 기반으로 업종별 유사 기술의 가치범위값을 제시해 준다면, 본 시스템이 보다 지능형으로 지원 모듈을 연계 활용하고 실시간으로 손쉽게 고(高)정확도의 기술가치범위를 제시해 줄 수 있을 것으로 기대된다. 본 고에서는 웹기반 STAR-Value 시스템이 참조데이터 기반으로 지능형 연계를 수행하도록 해주는 모형선택 가이드라인 지원기능, 기술가치범위 추론 지원기능, 유사기업 선정 기반의 시장점유율 산정 지원기능의 내부 로직 구성을 설명한다. 상기 지원기능을 통해 비전문가(또는 초보자) 수준에서 최적의 평가모형 선택, 기술가치 범위 추론, 유사기업 선택 및 시장점유율 산정에 대한 정보지원이 데이터 사이언스 및 기계학습 기반으로 수행될 수 있다. 본 연구는 기술가치평가 분야의 이론적 타당성을 평가실무에서 활용할 수 있는 평가모델 및 지원정보를 실제 탑재한 웹기반 시스템의 소개에 의미가 있으며, 추가적으로 보다 객관적이고 손쉬운 지능형 지원시스템의 활용성을 높임으로써, 앞으로 기술사업화의 제 분야에서 다양하게 활용할 수 있을 것으로 기대된다.

시맨틱 웹에서 개인화된 선호도를 이용한 의상 코디 시스템 개발 (Development of Apparel Coordination System Using Personalized Preference on Semantic Web)

  • 은채수;조동주;이정현;정경용
    • 한국콘텐츠학회논문지
    • /
    • 제7권4호
    • /
    • pp.66-73
    • /
    • 2007
  • 인터넷과 웹이 일상생활의 일부가 되면서 온라인상에는 방대한 양의 정보가 쌓이게 되었다. 이러한 흐름 속에서 정보의 양은 급속도로 늘어나는 현상을 보이며, 개인화를 통해 수많은 데이터들 사이에서 원하는 정보를 자동으로 찾아내는 기술의 중요성이 부각되고 있다. 현재 사용하는 필터링 중에서 콘텐츠를 중심으로 분석하여 사용자에게 추천하는 기법인 내용기반 필터링과 사용자와 유사한 선호도를 가진 사용자 군집의 선호도에 따라 새로운 사용자가 관심을 가질 것으로 생각되는 콘텐츠를 추천해 주는 기법인 협력적 필터링 기법이 있다. 그러나 협력적 필터링 방법으로 추천 받기 위해서는 특정 수 이상의 아이템에 대한 평가가 필요하며, 또한 비슷한 성향을 가지는 일부 사용자 정보에 근거하여 추천함으로써 나머지 사용자 정보를 무시하는 경향이 있다. 따라서 특정 수 이상의 선호정보가 준비되지 않은 사용자들에 대해서도 적절한 추천방법이 필요하다. 본 논문에서는 기존의 필터링들을 조합하고 좀 더 편리하게 정보를 공유하고 학습할 수 있는 시맨틱 웹에서 개인화된 선호도를 이용한 의상코디 시스템을 개발하였다. 이 시스템을 웹에서 제공한 결과 불필요한 검색시간이 줄어들고 사용자의 피드백을 통해 점차 만족도가 향상됨을 알 수 있었다.

신경망을 이용한 결측 수문자료 추정 및 실시간 자료 보정 (Missing Hydrological Data Estimation using Neural Network and Real Time Data Reconciliation)

  • 오재우;박진혁;김영국
    • 한국수자원학회논문집
    • /
    • 제41권10호
    • /
    • pp.1059-1065
    • /
    • 2008
  • 강우자료는 수문 해석에 있어 가장 기본이 되는 입력 자료이며, 다양한 원인에 의해 결측이 발생된다. 본 연구에서는 복잡한 자연현상 문제 해결에 그 응용성이 입증된 신경망 기법을 이용하여 결측 처리된 강우를 추정하기 위해서 소양강댐 유역 12개 강우량 관측소를 대상으로 신경망 모형을 구축하였으며, 모형의 성능 평가를 위해 실무에서 가장 많이 사용되고 있는 우량 보정 방법인 역거리법(RDS)과 산술평균법(AMM)으로 추정한 값과 비교하여 신경망을 이용한 추정 방법의 우수성을 보였다. 그리고 온라인상에서 보다 신뢰성 있는 수문자료를 재난관련 유관기관으로 전송하기 위해서 신경망 모형을 이용한 상시 실시간 보정이 가능하도록 신경망 학습기로 구성된 자동 보정시스템을 제안하였다.