• Title/Summary/Keyword: 온라인 스토어

Search Result 32, Processing Time 0.037 seconds

Importance-Performance Analysis for Korea Mobile Banking Applications: Using Google Playstore Review Data (국내 모바일 뱅킹 애플리케이션에 대한 이용자 중요도-만족도 분석(IPA): 구글 플레이스토어 리뷰 데이터를 활용하여)

  • Sohui, Kim;Moogeon, Kim;Min Ho, Ryu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.115-126
    • /
    • 2022
  • The purpose of this study is to try to IPA(Importance-Performance Analysis) by applying text mining approaches to user review data for korea mobile banking applications, and to derive priorities for improvement. User review data on mobile banking applications of korea commercial banks (Kookmin Bank, Shinhan Bank, Woori Bank, Hana Bank), local banks (Gyeongnam Bank, Busan Bank), and Internet banks (Kakao Bank, K-Bank, Toss) that gained from Google playstore were used. And LDA topic modeling, frequency analysis, and sentiment analysis were used to derive key attributes and measure the importance and satisfaction of each attribute. Result, although 'Authorizing service', 'Improvement of Function', 'Login', 'Speed/Connectivity', 'System/Update' and 'Banking Service' are relatively important attributes when users use mobile banking applications, their satisfaction is not at the average level, indicating that improvement is urgent.

A Program for Korean Animation Sound Libraries (국내용 애니메이션 사운드 라이브러리 구축 방안)

  • Rhim, Young-Kyu
    • Cartoon and Animation Studies
    • /
    • s.15
    • /
    • pp.221-235
    • /
    • 2009
  • Most of the sounds used in animated films are artificially made. A large number of the sounds used are either actual sound recordings or diversely processed artificial sounds made with professional sound equipments such as synthesizers. One animation episode contains numerous amounts of sounds, resulting in significant sound production costs. These sounds have full potential to be reused in different films or animations, but in reality we fail to do so. This thesis discusses ways these sound sources can be acknowledged as added new values to the present market situation as a usable 'digital content'. The iTunes Music Store is an American Apple company product that is acknowledged as the most successful digital content distribution model at the time being. Its system's sound library has potential for application in the Korean sound industry. In result, this system allows the sound creator to connect directly to the online store and become the initiative content supplier. At the same time, the user can receive a needed content easily at a low price. The most important part in the construction of this system is the search engine, which allows users to search for data in short periods of time. The search engine will have to be made in a new manner that takes into consideration the characteristics of the Korean language. This thesis presents a device incorporating the Wiki System to allow users to search and build their own data bases to share with other users. Using this system as a base, the Korean animation sound library will provide development and growth in the sound source industry as a new digital sound content.

  • PDF

Big Data Analysis for Strategic Use of Urban Brands: Case Study Seoul city brand "I SEOUL U" (도시 브랜드의 전략적 활용을 위한 빅데이터 분석 : 서울시 도시 브랜드 "I SEOUL U" 사례)

  • Lim, Haewen
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.197-213
    • /
    • 2022
  • In this study, text mining analysis was performed on online big data for recognition and assessment of urban brand I Seoul U. To this end, TEXTOM, a processing program for data acquisition and analysis was used, and the 'I SEOUL U' keyword was selected as an analysis keyword. Keyword analysis shows the keywords associated with I Seoul U to be as follows: First, as a business and marketing term, keywords include pop-up store, gallery, co-branding, (festival, etc.), commodities, private companies and online. Second, as an event-related term, keywords include Han River, tree-planting day, tree planting, Hongdae, Christmas, Mapo, Jung-gu, Sejong University, and festival. Third, as a promotional term, keywords include robotics engineer Dr. Dennis Hong, Government, Art and Korea. In the N Gram analysis, as the city brand of Seoul, I Seoul U, in the public interest, was found to contribute to the commercial activities of private companies. In connection-oriented analysis, business and marketing, events, and promotions have been derived as categories. In matrix analysis, it was found that the products of the pop-up store are mainly developed, and products in the form of co-branding were being developed. In the topic modeling, a total of 10 topics were extracted and needs for commercial utilization and information for event festivals were mostly found.

Improvement of recommendation system using attribute-based opinion mining of online customer reviews

  • Misun Lee;Hyunchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.259-266
    • /
    • 2023
  • In this paper, we propose an algorithm that can improve the accuracy performance of collaborative filtering using attribute-based opinion mining (ABOM). For the experiment, a total of 1,227 online consumer review data about smartphone apps from domestic smartphone users were used for analysis. After morpheme analysis using the KKMA (Kkokkoma) analyzer and emotional word analysis using KOSAC, attribute extraction is performed using LDA topic modeling, and the topic modeling results for each weighted review are used to add up the ratings of collaborative filtering and the sentiment score. MAE, MAPE, and RMSE, which are statistical model performance evaluations that calculate the average accuracy error, were used. Through experiments, we predicted the accuracy of online customers' app ratings (APP_Score) by combining traditional collaborative filtering among the recommendation algorithms and the attribute-based opinion mining (ABOM) technique, which combines LDA attribute extraction and sentiment analysis. As a result of the analysis, it was found that the prediction accuracy of ratings using attribute-based opinion mining CF was better than that of ratings implementing traditional collaborative filtering.

The Effects of Product Image Locations and Product Type on Responses to Search Engine Advertising (제품검색광고 내 제품 이미지 위치와 판매 단위 유형이 광고효과에 미치는 영향에 대한 연구)

  • Lee, Sungmi
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.397-404
    • /
    • 2021
  • Product image location in search engine advertising plays an important role in consumer perception when the product is relatively low involved and has functional value. The purpose of this research is to investigate the interaction effects of product image location and product type on advertising effectiveness. Building on the literature of location effects, we show that for products for which heaviness is considered a positive attribute, product image placed on the right are preferred. To test hypotheses, a 2(product image location: left vs. right) × 2(product type: single vs. bundle) experiment is conducted and a total of 144 paricipants took part in the experiment. The results revealed that respondents show higher brand attitude and purchse intention toward a bundle product's advertising with product image place on the right. The results provide implications and suggestions for improving search engine advertising and marketing strategies.

Social Big Data Analysis for Franchise Stores

  • Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.39-46
    • /
    • 2021
  • When conducting social big data analysis for franchise stores, reviews of multiple branches of a franchise can be collected together, from which analysis results can be distorted significantly. To improve its accuracy, it should be possible to filter reviews of other branches properly which are not subject to the analysis. This paper presents a method for social big data analysis which reflects characteristics of franchise stores. The proposed method consists of search key configuration and review filtering. For the former, the open data provided by Small Business Promotion Agency is used to extract region names for collecting reviews more accurately. For the latter, open search APIs provided by Naver or Kakao are used to obtain franchise branch information for filtering reviews of other branches that are not subject to analysis. To verify performance of the proposed method, experiments were conducted based on real social reviews collected from online, where the results showed that the accuracy of the proposed review filtering was 93.6% on the average.

Structural Relationships among Site Quality of Online Wine Store, Perceived Value, and Online Purchase Intention (온라인 와인매장 사이트 품질, 지각된 가치, 온라인 구매의도 간의 구조적 관계)

  • Han, Su-Jin;Kim, Yoo-Jung;Kang, Sora
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6133-6145
    • /
    • 2013
  • With the increasing number of online wine stores, customers are increasingly seeking to purchase wine online. On the other hand, purchasing wine online is prohibited by law or regulation in Korea. Therefore, customers mainly search for wine information, inquire about wine products, and make a pre-purchase at an online wine store. Online wine stores play important roles in customer's purchase decision-making, and are likely to be a useful wine distribution channel in the near future. Therefore, the aim of this study was to identify the determinants of the online wine purchase intention, and examine the structural relationships between the determinants and online wine purchase intention. The site quality of online wine stores (information quality, system quality, service quality), and perceived value (quality value, price value, emotional value, social value) were selected as the determinants of online wine purchase intention based on literature review. The data was collected from those who had experience using an online wine store to purchase wine, and the data was used to test the proposed research model. The findings showed that the information quality was not related to the perceived value (quality value, price value, emotional value, social value). The system quality was proven to be positively and significantly related to the quality value, price value, and emotional value, whereas it had no impact on the social value. In addition, the service quality was found to affect the perceived value (quality value, price value, emotional and social value). Finally, the results showed that the quality value, emotional value, and social value have a positive impact on the online wine purchase intention, whereas the price quality is not related to the online wine purchase intention. These results are expected to make a contribution to a better understanding of how the quality of online wine stores and the customer's perceived value affect the online wine purchasing intention.

The emergence and ensuing typology of global ebook platform -The case study on Google eBook, Amazon Kindle, Apple iBooks Store (글로벌 전자책 플랫폼의 부상 과정과 유형에 관한 연구 -구글 이북, 아마존 킨들, 애플 아이북스 스토어에 대한 사례연구)

  • Chang, Yong-Ho;Kong, Byoung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3389-3404
    • /
    • 2012
  • Based on the case study methods, the study analyzes emergence and ensuing typology of global ebook platforms such as Google eBook, Amazon Kindle, iBooks Store. Global ebook platforms show adaptation process responding to rapidly changing digital technological envirment and it's fitness landscape. The critical elements in its emerging process are the distinct selection criteria, the degree of resource abundance and the search process based on open innovation. Based on these critical elements, the global platforms show speciation process, so called niche creation and are evolving into a variety of the typology based on the initial condition of key resource which makes the platform emerge and grow. Each global ebook platforms is evolving into open platform, hybrid platform, closed platform. Google eBook has openness and extensibility due to a variety of devices based on Android and a direct involvement of actors. Amazon Kindle has developed from a online bookstore and into the hybrid platform which have not only closed quality but also openness with ebook devices and mobile network. iBooks Store has developed into the closed platform through the agency model based on competitive hardwares and closed quality with iphone and ipad.

Bottlenecks in Building an Online Customer Base: A Experimental Field Study on Viral Marketing (온라인 고객 기반 확보의 장애 요인: 바이럴 마케팅의 현장 실험 연구)

  • Park, Sunju;Chung, Seungwha;Pyo, Na Sung;Hwang, Soonki
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.682-695
    • /
    • 2019
  • In recent years, using a connected platform, companies have built and implemented a mobile viral marketing strategy to attract new customers and to have long-term relationships with existing customers. The emergence of interactive Web 2.0 has led to an explosive increase in customer engagement, and practitioners have become interested in connected platform to build close relationships with their customers. However, the study on the effectiveness of various customer influx methods using the connected platform that companies utilize for an increase of customer participation is insufficient. Based on the theoretical study of Sashi (2012), this study analyzes the actual mobile viral promotion of company A's open market shopping mall for the purpose of bringing new customers and having a long-term relationship with the new customers[1]. By analyzing the customer engagement type, the implications for the effectiveness of mobile viral promotion are suggested. First, as a result of the immediate effect of online viral promotion, promotions are partially effective in attracting new customers. Second, as a result of examining the change of customer engagement type in order to find out the long - term effect of online viral promotion, it was found that in most cases, new customers were not become satisfied customers and, Laggard Effect, which takes time to become a satisfied customer, has been confirmed.

Development of Hybrid Recommender System Using Review Data Mining: Kindle Store Data Analysis Case (리뷰 데이터 마이닝을 이용한 하이브리드 추천시스템 개발: Amazon Kindle Store 데이터 분석사례)

  • Yihua Zhang;Qinglong Li;Ilyoung Choi;Jaekyeong Kim
    • Information Systems Review
    • /
    • v.23 no.1
    • /
    • pp.155-172
    • /
    • 2021
  • With the recent increase in online product purchases, a recommender system that recommends products considering users' preferences has still been studied. The recommender system provides personalized product recommendation services to users. Collaborative Filtering (CF) using user ratings on products is one of the most widely used recommendation algorithms. During CF, the item-based method identifies the user's product by using ratings left on the product purchased by the user and obtains the similarity between the purchased product and the unpurchased product. CF takes a lot of time to calculate the similarity between products. In particular, it takes more time when using text-based big data such as review data of Amazon store. This paper suggests a hybrid recommendation system using a 2-phase methodology and text data mining to calculate the similarity between products easily and quickly. To this end, we collected about 980,000 online consumer ratings and review data from the online commerce store, Amazon Kinder Store. As a result of several experiments, it was confirmed that the suggested hybrid recommendation system reflecting the user's rating and review data has resulted in similar recommendation time, but higher accuracy compared to the CF-based benchmark recommender systems. Therefore, the suggested system is expected to increase the user's satisfaction and increase its sales.