• Title/Summary/Keyword: 온도 조절기

Search Result 604, Processing Time 0.03 seconds

Effect of Heat-Conservation Method on Watermelon (Citrullus lantatus $T_{HUNB}.$) in Unheated Plastic House. (시설 수박의 터널피복재 보온효과 구명)

  • 주선종;정재현;이경희;황선웅
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1999.04a
    • /
    • pp.87-91
    • /
    • 1999
  • 봄철 하우스 수박 무가온 조숙재배에 알맞는 보온방법을 개발하고자 아취형 단동하우스에 PE필름터널, 유공필름+축열물주머니, 유공필름터널+부직포터널구를 처리하고, 삼복꿀수박을 '98년 3월 23일 정식하여 4월 27일까지 36일간 터널피복재의 보온성을 검토한 결과는 다음과 같다. (1) 보온재 피복 재배 기간중 터널내 최저온도는 PE터널구 10.9$^{\circ}C$에 비하여 유공필름터널에 축열물주머니구와 부직포터널구는 각각 0.9, 2.1$^{\circ}C$ 높았다. (2) 3월하순 활착기의 하우스내 일사량은 실외 175.2w/$m^2$ 비하여 124.2w/$m^2$로 51w/$m^2$ 낮았다. (3) 터널피복재 환기작업에 따른 소요 노동력은 PE터널구 25.2시간/10a/36일에 비하여 유공필름터널+부직포터널구는 32.4시간으로 7.2시간/10a/36일 증가하였으나, 유공필름터널+축열물주머니는 개폐작업으로 인한 투하 노동력이 없었다. (4) 터널재배 기간중 유공필름터널+부직포터널구가 초기생육이 촉진되었으며, 생육후기에 발생한 흰가루병 이병엽율은 2.8%로 현저히 감소하였다. (5) 수박의 수확기는 PE필름터널구 6월 22일에 비하여 유공필름터널+축열물주머니와 부직포터널구는 6월 12, 15일로 7, 10일 앞당겼으며, 수량은 PE터널구 2,385kg/10a에 비하여 20, 32% 각각 증수하였다.

  • PDF

An Experimental Study on the Fire Hazard of Electric Heating Pad (전기장판의 화재위험성 실험연구)

  • Lee, Bok-Young;Park, Chan-Ho;Park, Sang-Tae;Hong, Sung-Ho;Yu, Hyun-Jong
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.113-117
    • /
    • 2006
  • This study presents analysis of fire hazard of electrical heating pad. In order to analyze fire hazard fire experimental and flammability experiment is conducted. The fire experiment is conducted to simulate normal condition and abnormal condition such as breakdown of thermostat. Vertical burning test(UL 94) is conducted for the fire retardant experiment. Kinds of electric heating pad used for experiment are electric mat, fabric pad, vinyl pad. The results show that fire hazard is high in case of breakdown of thermostat with the rating voltage supply. And Material of electric heating pad has not fire retardant performance.

Early Detection of Foliar Damage Caused by Ozone Exposure with Thermal Image Analysis (식물체 잎표면의 열화상 분석을 통한 오존 피해 조기 진단)

  • 허재선;이충일
    • Korean Journal Plant Pathology
    • /
    • v.12 no.1
    • /
    • pp.132-136
    • /
    • 1996
  • 오존에 의한 식물체의 가시피해 발현 이전에 나타나는 비가시적 피해를 찾아내기 위하여 적외선 열화상장치(infrared thermography)를 이용하여 하루 8시간씩 0.3 ppm 오존에 노출된 나팔꽃(Ipomoea purpurea)잎표면의 온도분포 변화를 조사하였다. 노출 첫날에는 온도분포의 뚜렷한 변화를 볼 수 없었다. 노출 2일째, 오존 노출 2시간 결과후, 완전히 자란 제3엽의 특정 부분에서 급격한 온도분포 변화를 보였으며, 그로부터 약 4시간 경과 후에 동일 지점에서 최초의 가시적 피해가 발생했다. 급격한 온도분포 변화를 보인 부분과 최초 가시피해가 발생한 부분이 일치한 점은 가시피해 발생과 그 이전의 온도분포 변화가 밀접하게 상관되어 있다는 것을 의미한다고 하겠다. 잎표면의 열화상 분석방법을 대기오염원에 의한 식물체의 가시피해 발현 이전에 진행되고 있는 비가시적 반응의 조기진단에 적용할 수 있으며 생태환경 친화적인 대기 환경관리를 위한 대기오염원은 배출조절용 생체반응기(biosensor)로 이용 가능하겠다.

  • PDF

Papers : A Study on Heat Mitigation for KOMPSAT - 2 High Heat Dissipation Electronic Boxes (논문 : 다목적 실용위성 2 호 고전력 소산 전장품의 열부하 완하에 관한 연구)

  • Park, Jin-Han;Jang, Yeong-Geun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.77-86
    • /
    • 2002
  • 위성은 일단 한 번 발사하고 나면 운용궤도상에서 수리 및 회수가 거의 불가능하기 때문에 위성에 들어가는 모든 개발 부품들은 완벽한 설계, 충분한 해석, 고 작업도의 제작, 그리고 다양한 시험이 반드시 수반되어야 한다. 위성시스템에서 전자 소자의 신뢰성에 영향을 주는 인자는 다양하다. 과도한 열은 전자소자의 실패를 유발해서 결과적으로는 전체 위성의 실패를 유도할 수 있다. 이 논문에서는 다목적 실용위성 2호의 고전력 소산 전장품의 열부하 완화를 위한 방안을 경우별로 연구 비교하였다. 고전력 소산 전장품의 열부하를 완화하기 위해서는 하우징 두께의 증가가 필요하며, 전력조절기의 다이오드나 트랜지스터처럼 전력소산이 큰 소자에 대해서는 장착위치를 변경하거나 장착 부분의 열전도율을 증가시키는 방법이 필요하다. 또한 전력조절기처럼 장착면이 좁은 경우에는 복사의 영향이 크며, 이러한 전장품의 열부하를 완화하기 위해서는 주위 벽면의 온도를 낮추거나 하우징 표면 방사율을 증가시키는 방법이 효과적임이 알 수 있다.

Implementation of a Simulation Tool for Monitoring Runtime Thermal Behavior (실시간 온도 감시를 위한 시뮬레이션 도구의 구현)

  • Choi, Jin-Hang;Lee, Jong-Sung;Kong, Joon-Ho;Chung, Sung-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.145-151
    • /
    • 2009
  • There are excessively hot units of a microprocessor in today's nano-scale process technology, which are called hotspots. Hotspots' heat dissipation is not perfectly conquered by mechanical cooling techniques such as heatsink, heat spreader, and fans; Hence, an architecture-level temperature simulation of microprocessors is evident experiment so that designers can make reliable chips in high temperature environments. However, conventional thermal simulators cannot be used in temperature evaluation of real machine, since they are too slow, or too coarse-grained to estimate overall system models. This paper proposes methodology of monitoring accurate runtime temperature with Hotspot[4], and introduces its implementation. With this tool, it is available to track runtime thermal behavior of a microprocessor at architecture-level. Therefore, Dynamic Thermal Management such as Dynamic Voltage and Frequency Scaling technique can be verified in the real system.

Effect of Root Zone Cooling Using the Air Duct on Temperatures and Growth of Paprika During Hot Temperature Period (공기순환 덕트를 이용한 근권부 냉방이 고온기 파프리카 재배에서 온도와 생육에 미치는 영향)

  • Choi, Ki Young;Jang, Eun Ji;Rhee, Han Cheol;Yeo, Kyung-Hwan;Choi, Eun Young;Kim, Il Seop;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.243-251
    • /
    • 2015
  • This study aimed to determine the effects of root zone cooling using air duct on air temperature distribution and root zone and leaf temperatures of sweet pepper (Capsicum annum L. 'Veyron') grown on coir substrate hydroponic system in a greenhouse. When the air duct was laid at the passage adjacent the slab, the direction of air blowing was upstream at $45^{\circ}$. The cooling temperature was set at $20^{\circ}C$ for day and $18^{\circ}C$ for night. For cooing timing treatments, the cooling air was applied at all day (All-day), only night time (5 p.m. to 1 a.m.; Night), or no cooling (Control). The air temperature inside the greenhouse at a height of 40 and 80cm above the floor, and substrate and leaf temperatures, fruit characteristics, and fruit ratio were measured. Under the All-day treatment, the air temperature was decreased about $4.4{\sim}5.1^{\circ}C$ at the height of 40cm and $2.1{\sim}3.1^{\circ}C$ at the height of 80cm. Under the Night treatment, the air temperature was decreased about $3.4{\sim}3.8^{\circ}C$ at the height of 40cm and $2.2{\sim}2.7^{\circ}C$ at the height of 80cm. The daily average temperature in the substrate was in the order of the Control ($27.7^{\circ}C$) > Night ($24.1^{\circ}C$) > All-day ($22.8^{\circ}C$) treatment. Cooling the passage with either upstream blowing at $45^{\circ}$ or horizontal blowing at $180^{\circ}$ was effective in lowering the air temperature at a height of 50cm; however, no difference at a height of 100cm. Cooling the passage with perpendicular direction at $90^{\circ}$ was effective in lowering the air temperature at the height between 100 and 200cm above the floor; however, no effect on the temperature at the height of 50cm. A greater decrease in leaf temperature was found at 7 p.m. than that at 9. a.m. under both All-day and Night treatments. Fresh weight partitioning of fruit was in the order of the All-day (48.6%) > Night (45.6%) > Control (24.4%) treatment. A higher fruit production was observed under the All-day treatment, in which the accumulated average temperature was the lowest, and it may have been led to a higher proportion of photosynthate distributed to fruit than other treatments.

Control of Bemisia tabaci by Two-Fluid Fogging System (이류체 포그시스템을 활용한 가루이 방제)

  • Kim, Sung-Eun;Lee, Sang-Don;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.394-398
    • /
    • 2011
  • The effect of two-fluid fogging system on the control of Bemisia tabaci in tomato cultivation was evaluated in a greenhouse. The number of Bemisia tabaci was decreased by 87% from the fog treatment for 7 days. During the fog treatment, the mean daily temperature was decreased by $2^{\circ}C$ and the mean daily relative humidity was increased by 3~4% as compared to the non-treatment. The reduction of Bemisia tabaci in the treatment might not be resulted from the differences in temperature and humidity in the greenhouse. The sound coming from the two-fluid fogging system did not affect when it was operated without water inside. Therefore it was concluded that water droplets coming out the nozzle reduced the growth and the movement of whiteflies because the suspension of tiny water droplets were attached on the skin of whiteflies.

Control Effect of Temperature and Humidity by Ventilation Fan Operation Methods in Wintering Honey Bee House (월동용 양봉사의 환기팬 작동방식에 따른 온 ${\cdot}$ 습도 조절효과)

  • Lee, Jong-Won;Lee, Hyun-Woo;Lee, Suk-Gun;Jin, Ran-Shu;Choi, Kwang-Soo
    • Journal of Bio-Environment Control
    • /
    • v.12 no.3
    • /
    • pp.127-131
    • /
    • 2003
  • This study was conducted to establish the ventilation fan operation schedule to be able to provide satisfactory environment for colonies in thc wintering honey bee house. The simulation and practical measuring test were conducted to verify the applicability of an existing simulation program to thc calculation of inside thermal environment condition of the house, and the environment control performance was compared between the two types of fan operation schedule to find the proper schedule. It was concluded that the program could be used to design thc materials of the enclosure and the fan operation schedule and decide the number of accommodation hives. Inside temperature of bee house controlled by the fan operation schedule B was lower than the schedule A under the similar high outside temperature condition. In the presence of the high outside temperature condition, inside air temperature of bee house could be decreased by changing fan operation schedule A to schedule B. The humidity variation in bee house controlled by the tan operation of schedule B was smaller than that by schedule A. These results indicated that the schedule B was superior in the aspect of the environment control performance.

Characteristics of Temperature Control by Hot-gas Bypass Flow Rate on Industrial Water Cooler (핫가스 바이패스 유량에 따른 산업용 냉각기의 온도제어 특성)

  • Baek, Seung-Moon;Choi, Jun-Hyuk;Byun, Jong-Yeong;Moon, Choon-Geun;Lee, Ho-Saeng;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1129-1136
    • /
    • 2009
  • The paper presents the performance characteristics for a cooling system using EEV. The water cooler was used to reduce thermal deformation and contraction due to high speed of machine tools and the EEV was used for capacity control for water cooler. The apparatus was designed for hot-gas bypass system which a hot-gas can flows from outlet of compressor to the inlet of evaporator. This experiment is the intermediary study for precise temperature control through PID control. The results show that the evaporator pressure increased and refrigeration capacity decreased as the EEV opening step of hot-gas bypass increased. These results can be used as basic data for the design of effective water cooler.

Removal of HCl Using a Bag-Filter with Addition of Bicarbonate (중탄산나트륨이 첨가된 여과집진기를 이용한 염화수소의 제거)

  • Lee, Keon-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.3
    • /
    • pp.121-128
    • /
    • 2007
  • The purpose of this study was to investigate the removal efficiencies of HCl in dry reactor and Bag-Filter system. The bicarbonate was used as adsorbent to measure the HCl removal rate. The performance of bicarbonate was evaluated to investigate the removal efficiency. It was analysed that the best operation condition in using bicarbonate in process. The operating parameters was residence time, stoichiometric ratio, temperature and pressure. The Residence time was 1.5 sec, stoichiometric ratio was 1SR, 1.25SR, temperature was $160^{\circ}C$, $180^{\circ}C$, $200^{\circ}C$ and the bag filter pressure was 210mmAq, 230mmAq, 250mmAq. In this study it was found that the stoichiometric ratio and pressure can be effected in removal of HCl however the removal efficiency do not depends on temperature. The best operating condition was on 1SR, 230mmAq and $180^{\circ}C$ respectively and in this condition the best removal rate was 99.50%.

  • PDF