• 제목/요약/키워드: 온도차 발전시스템

검색결과 67건 처리시간 0.024초

Performance Characteristics of R744 OTEC Power Cycle with Operation Parameters (운전조건에 따른 R744용 해양온도차 발전 사이클의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo;Baek, Seung-Moon;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.580-585
    • /
    • 2012
  • In this paper, the cycle performance analysis for condensation and evaporation capacity, total work and efficiency of ocean thermal energy conversion power system using R744 ($CO_2$) is presented to offer the basic design data for the operating parameters of this system. The operating parameters considered in this study include superheating and subcooling degree, evaporation and condensation temperature, pump and turbine efficiency. The main results were summarized as follows : The evaporation capacity of R744 increases with superheating and subcooling degree, but decreases with the increasing condensation temperature. The total work increases with superheating and subcooling degree of R744, but decreases with the increasing evaporating temperature. And, the efficiency increases with subcooling and superheating degree, but decreases with the increasing condensation temperature. Therefore, superheating and subcooling degree, evaporation and condensation temperature and pump and turbine efficiency of R744 OTEC power system have an effect on the evaporation and condensation capacity, total work and efficiency of this system. With a thorough grasp of these effect, it is necessary to design the OTEC power cycle using R744.

Research on the Development of Thermoelectric Generation System for Industrial Waste Heat Recovery (산업 폐열회술를 위한 열전발전시스템 개발 연구)

  • ;;;;;D.M.Rowe
    • Journal of Energy Engineering
    • /
    • 제9권1호
    • /
    • pp.19-27
    • /
    • 2000
  • 본 연구에서는 폐열회수를 위한 열전발전기술개발의 일환으로 자체 고안한 열전발전시스템을 구성하였고 상용화된 열전모듈을 적용하여 다양한 온도범위에서 열전모듈의 출력성능을 시험하였다. 시스템에 적용된 실험용 열전소자로는 49개의 열전쌍으로 구성된 미국 A 사의 모듈과 127개의 열전쌍으로 구성된 국내 B 사에서 제조한 모듈을 사용하였으며, 열전모듈 한 개에 대하여 , 그리고 5개의 모듈을 직렬로 연결하여 온도차 ($\Delta$T)를 변화시키면서 이때의 출력변화를 측정하였고, 또한15$0^{\circ}C$로 고정된 온도차에서 부하저항을 변화시키면서 출력성능을 실험하여 발전출력에 미치는 시스템인자들을 조사하고 이를 적용한 발전시스템의 최적조건을 도출하고자하였다.

  • PDF

Exergy Analysis of R744 OTEC Power Cycle with Operation Parameters (작동변수에 따른 R744용 해양온도차 발전 사이클의 엑서지 분석)

  • Yoon, Jung-In;Son, Chang-Hyo;Baek, Seung-Moon;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권8호
    • /
    • pp.1036-1042
    • /
    • 2012
  • This paper describes an analysis on exergy efficiency of R744 OTEC power system to optimize the design for the operating parameters of this system. The operating parameters considered in this study include subcooling and superheating degree, evaporation and condensation temperature, and turbine and pump efficiency, respectively. The main results are summarized as follows : As the evaporation temperature, superheating degree, and turbine and pump efficiency of R744 OTEC power system increases, the exergy efficiency of this system increases, respectively. But condensation temperature and subcooling degree of R744 OTEC power system increases, the exergy efficiency of this system decreases, respectively. The effect of evaporation temperature and pump efficiency on R744 OTEC power system is the largest and the lowest among operation parameters, respectively. Therefore, the refrigerant temperature in the evaporator must be closely to the surface seawater temperature to enhance the exergy efficiency of R744 OTEC power system.

Design of a 100kW-class radial inflow turbine for ocean thermal energy conversion using R32 (R32를 이용한 100kW급 해양온도차발전용 반경류터빈의 설계)

  • Kim, Do-Yeop;Kim, You Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권9호
    • /
    • pp.1101-1105
    • /
    • 2014
  • Ocean Thermal Energy Conversion(OTEC) which uses the temperature difference between warm surface sea-water and cold deep sea-water to produce electric power is the promising technology. OTEC is able to be utilized as the $CO_2$ reducing technology by using the consistent temperature differential, while the system efficiency is very low. Thus, the design and development of a efficient turbine is essential to improve the system efficiency for OTEC. In this study, a 100kW-class radial inflow turbine using R32 was designed for OTEC and this turbine's performance was estimated by analysis of CFD. According as the simulation results, turbine's geometry was corrected. The radial inflow turbine satisfying the requirements is designed by the repeated attempts.

A Study on the Ship's ORC Power System using Seawater Temperature Difference (선박의 해수 온도차를 이용한 ORC 발전 시스템에 관한 연구)

  • Oh, Cheol;Song, Young-Uk
    • Journal of Navigation and Port Research
    • /
    • 제36권5호
    • /
    • pp.349-355
    • /
    • 2012
  • In this study, for the purpose of reduction of $CO_2$ gas emission and to increase recovery of waste heat from ships, the ORC(Organic Rankine Cycle) is investigated and offered for the conversion of temperature heat to electricity from waste heat energy from ships. Simulation is performed with waste heat from the exhaust gasse which is relatively high temperature and cooling sea water which is relatively low temperature from ships. The result shows that 1,000kW power generation is available from exhaust gas and 600kW power generation is available from sea water cooling system. Different fluid is used for simulation of the ORC system with variable temperature and flow condition and efficiency of system and output power is compared.

Performance Investigation of Solar-Heating Ocean Thermal Energy Conversion (SH-OTEC) in Korea (태양열 이용 해양온도차발전시스템의 성능 예측)

  • Nguyen, Van Hap;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제37권1호
    • /
    • pp.43-49
    • /
    • 2013
  • The use of ocean thermal energy conversion (OTEC) to generate electricity is one of the methods proposed to utilize renewable energy and to protect the environment. In this study, simulations were performed to investigate the effect of weather conditions in the Ulsan region, Korea, on the efficiency of a solar-heating OTEC (SH-OTEC) system. This system utilizes solar thermal energy as the secondary heat source. Various working fluids were also simulated to select one that is suitable for this system. The results showed that R152A, R600, and R600A, in that order, were the most suitable working fluids. The effective area of the solar collector for a $20^{\circ}C$ increase in the collector outlet temperature fluctuated from 50 to $97m^2$ owing to the change in the monthly average solar gain. The annual average efficiency of the SH-OTEC increases to 6.23%, compared to that of a typical conventional OTEC, which is 2-4%.

LNG-Vessels Hybrid Engine Seawater Desalination Complex System (LNG 선박 하이브리드 엔진 및 해수 담수화 복합 시스템)

  • Lim, Jae Jun;Lee, Dong-Heon;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.663-664
    • /
    • 2016
  • Temperature difference power generation using sea water is a method repeatedly closed liquefaction and gasification by using the ammonia (refrigerant) of the deep sea water and surface water with a temperature difference between turning the turbine. The larger the temperature difference between the nature of the temperature characteristic energy generation development, the better. This is the story that the surface waters of the deep-water temperature difference is large. But the winter is not large temperature difference between surface water and deep water has lowered energy efficiency. And desalination technologies accounted for 97% of the earth, but we can not eat the technology to convert sea water into fresh water, fresh water produced by the desalination technology that is available for various industries such as irrigation, drinking water in the vessel.In this paper, LNG transport vessels, based on the LNG transport ship to the temperature difference power generation using cold energy of thermal energy and LNG marine diesel engines, which use the existing order to improve the temperature of the surface waters of the season that is the current problem we propose that a complex development of desalination and desalination of seawater freezing research into hybrid research and utilizing the cold energy of the engine.

  • PDF

Study of Reduction of Mismatch Loss of a Thermoelectric Generator (열전발전 시스템의 부정합손실 저감방안 연구)

  • Choi, Taeho;Kim, Tae Young
    • Journal of Convergence for Information Technology
    • /
    • 제12권3호
    • /
    • pp.294-301
    • /
    • 2022
  • In this study, a multi-layer cascade (MLC) electrical array configuration method for thermoelectric generator consisting of plural number of thermoelectric modules (TEMs) was proposed to reduce mismatch loss caused by temperature maldistribution on the surfaces of the TEMs. To validate the effect of MLC on the mismatch loss reduction, a numerical model capable of reflecting multi-physics phenomena occuring in the TEMs was developed. MLC can be employed by placing a group of TEMs experiencing relatively low temperature differences in an electric layer with more electrical branches while locating a group of TEMs experiencing relatively high temperature differences in an electric layer with less electrical branches. The TEMs were classified using the temperature distribution obtained by the numerical model. A MLC with an optimal electrical branch ratio showed a 96.5% of electric power generation compared to an ideal case.

A Study of Closed OTEC Power Plants (폐쇄형 해양온도차발전 사이클에 관한 연구)

  • Shin, Sang-Ho;Jung, Dong-Soo;Kim, Chong-Bo;Seo, Tae-Beom;Chun, Won-Gee;Auh, P. Chung-Moo
    • Solar Energy
    • /
    • 제17권4호
    • /
    • pp.23-33
    • /
    • 1997
  • In this paper, performance of various working fluids is evaluated for the closed Ocean Thermal Energy Conversion(OTEC) power plant operating on Rankine cycle. The evaporator and condenser are modeled via UA and LMTD method while turbine and pump are modeled by specifying isentropic efficiencies. R22, Propane, Propylene, R134a, R125, R143a, R32, R410A and Ammonia are used as working fluids. Results show that newly developed fluids such as R410A and R32 that do not cause stratospheric ozone layer depletion perform as well as R22 and ammonia. The superheat at the evaporator exit and subcooling at the condenser exit do not affect the performance of the simple OTEC power cycle. Turbine efficiency and heat exchanger size influence greatly the performance of the Rankine cycle. Finally, it was shown that closed OTEC power plants can practically generate electricity when the difference in warm and cold sea water inlet temperatures is greater than $20^{\circ}C$.

  • PDF