• Title/Summary/Keyword: 온도전이

Search Result 2,641, Processing Time 0.034 seconds

Effects of Processing Conditions on the Nutritional Quality of Seafood -1. Effects of Heating and Storage Conditions on Protein Quality of Surimi Products- (해양식량자원의 가공조건별 영양적 품질평가 -1. 가열 및 저장조건에 따른 수산연제품의 단백질 품질변화-)

  • RYU Hong-Soo;MOON Jeung-Hye;PARK Jeung-Hyeon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.3
    • /
    • pp.282-291
    • /
    • 1994
  • Optimal processing conditions and shelf-life of steamed kamaboko made from Alaska pollock surimi were investigated, including protein digestibility, computed protein efficiency ratio (C-PER), trypsin inhibitor content and protein solubility. Steamed kamaboko containing $5\%$ starch and $33\%$ water in pollock surimi showed the best protein quality in terms of C-PER and protein digestibility. Steaming could not give any significant advantage over kamaboko protein digestibility but a higher C-PER resulted from steamed kamaboko. All kamaboko products had trypsin content of 1.4 to $2.0mg\%$ which was $10\%$ of total trypsin inhibitor levels in frozen pollock meat. A two stage steaming process, the first at $40^{\circ}C$ for 20min followed by a second 10min steaming period at $95^{\circ}C$, was found to be the most effective way of the most effective heating process for kamaboko protein quality. C-PERs of marketed Korean surimi products ranged from $2.8{\sim}2.9$ for steamed kamaboko and $2.9{\sim}3.2$ for crab meat analog which were superior to ANRC casein(2.5). Measured protein digestibility of all products were ranged from 86 to $89\%$. VBN and protein solubility data suggest Korean marketed surimi products could have a shelf-life of 15 days at $4^{\circ}C$ for crab meat analog and 20 days at $4^{\circ}C$ for steamed kamaboko.

  • PDF

Change of Constituent Components in Selected Korean Chestnut (Castanea crenata S. et Z.) Cultivars by Different Storage Conditions (국내산 밤 일부 품종의 다른 저장 조건들에 의한 성분변화)

  • Kim, Dae-Jung;Chung, Mi-Ja;Seo, Dong-Joo;You, Jin-Kyoun;Shim, Tae-Heum;Choe, Myeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.2
    • /
    • pp.225-234
    • /
    • 2009
  • The aim of this study was to analyze moisture, crude protein, crude lipid, vitamin C and sugar changes in selected Korean chestnut cultivars such as Danteack, Deabo, Seokchu, Okkwang and Byunggo during storage at $4^{\circ}C$ and $-10^{\circ}C$ for 10 months. The moisture contents of selected Korean chestnut cultivars ranged from 49.9 to 57.4%. The moisture content of Seokchu was the highest. The contents of moisture in white kernel were higher than that in yellow kernel. The content of moisture showed decreasing tendency after 10 months of storage. The crude protein and crude lipid contents in whole kernel of selected Korean chestnut cultivars were $3.3{\sim}4.2%$ and $0.3{\sim}1.6%$, respectively. The crude protein content of Deabo was the highest. The crude protein in Danteack, Seokchu, Okkwang and Byunggo was increased during storage at $4^{\circ}C$ for 10 months, while that in whole kernel of Deabo was decreased and no changes in crude protein in yellow kernels of Deabo were observed. The crude protein in Okkwang was increased during storage at $-10^{\circ}C$ for 10 months. The cold storage was found to have higher composition change of crude protein than the freezing storage. The content of crude lipid in Daebo and Byunggo was decreased during storage at $4^{\circ}C$ and $-10^{\circ}C$. Yellow kernels of Deabo, Okkwang and Byunggo were found to have higher crude lipid content than white kernels. The vitamin C content also decreased during storage at $4^{\circ}C$ and $-10^{\circ}C$ and the decrease in vitamin C content was higher at $4^{\circ}C$ than $-10^{\circ}C$. Vitamin C was not detected after 3 months storage at $-10^{\circ}C$. The sugar content increased at the latter period storage at $4^{\circ}C$ and $-10^{\circ}C$. The sugar content of selected Korean chestnut cultivars ranged from $36.2{\sim}44.3%$ and Dantaek had the highest sugar content.

An Adjustment of Cloud Factors for Continuity and Consistency of Insolation Estimations between GOES-9 and MTSAT-1R (GOES-9과 MTSAT-1R 위성 간의 일사량 산출의 연속성과 일관성 확보를 위한 구름 감쇠 계수의 조정)

  • Kim, In-Hwan;Han, Kyung-Soo;Yeom, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.69-77
    • /
    • 2012
  • Surface insolation is one of the major indicators for climate research over the Earth system. For the climate research, long-term data and wide range of spatial coverage from the data observed by two or more of satellites of the same orbit are needed. It is important to improve the continuity and consistency of the derived products, such as surface insolation, from different satellites. In this study, surface insolations based on Geostationary Operational Environmental Satellite (GOES-9) and Multi-functional Transport Satellites (MTSAT-1R) were compared during overlap period using physical model of insolation to find ways to improve the consistency and continuity between two satellites through comparison of each channel data and ground observation data. The thermal infrared brightness temperature of two satellites show a relatively good agreement between two satellites : rootmean square error (RMSE)=5.595 Kelvin; Bias=2.065 Kelvin. Whereas, visible channels shown a quite different values, but it distributed similar tendency. And the surface insolations from two satellites are different from the ground observation data. To improve the quality of retrieved insolations, we have reproduced surface insolation of each satellite through adjustment of the Cloud Factor, and the Cloud Factor for GOES-9 satellite is modified based on the analysis result of difference channel data. As a result, the insolations estimated from GOES-9 for cloudy conditions show good agreement with MTSAT-1R and ground observation : RMSE=$83.439W\;m^{-2}$ Bias=$27.296W\;m^{-2}$. The result improved accuracy confirms that the modification of Cloud Factor for GOES-9 can improve the continuity and consistency of the insolations derived from two or more satellites.

Investigation on ecological habitats in Armillaria gallica mushrooms (천마버섯(Armillaria gallica )의 생태학적 서식지 조사)

  • Yoo, Young Bok;Oh, Jin A;Oh, Youn Lee;Moon, Jiwon;Shin, Pyung Gyun;Jang, Kab Yeul;Kong, Won-Sik
    • Journal of Mushroom
    • /
    • v.11 no.1
    • /
    • pp.36-40
    • /
    • 2013
  • Armillaria gallica was ecologically surveyed to investigate its relationship with Gastrodia elata in cultivation areas of Korea in 2012. In the observation made around October 17 in the area of Namyangju (Gyeonggi), Sangju (Gyeongbuk) and Gimcheon (Gyeongbuk) in Korea, the fruit bodies of A. gallica were consistently found near the cultivation areas of Gastrodia elata across these cultivation areas. Since the temperature and rainfall have been considered as important factors of fruiting of A. gallica, we checked the temperature and rainfall around two weeks ago of mushroom fruiting. The average temperature of all cultivation areas was $9.9{\sim}17.5^{\circ}C$ (the lowest temp.: $3{\sim}23^{\circ}C$, the highest temp.: $15{\sim}26^{\circ}C$) and the annual rainfall was 0.5~1.0mm on October 10 which can be compared to 2.5~4.5mm on October 17. Fruiting bodies were generally developed at weedy field in which G. elata were cultivated five years ago. The field was inclined 15 degrees, east-facing and consists of loam. The fruit bodies were formed on both sides of a small ditch between the Gastrodia elata cultivation fields and neighboring fields, and the areas were common weeds and moisture at all times. The fruiting bodies were growing above the soil rather than oak wood. Gregarious, but also occurs to 1-5 fruiting bodies occur sporadically. Results observed in detail the growing areas, some fruit bodies were developed along the black and thick rhizomorph formation.

Effect of Expeller Cake Fertilizer Application on Soil Properties and Red Mustard (Brassica Juncea L.) Yield in Soil of Organic Farm of Plastic Film Greenhouse (유기농 시설하우스 토양에서 유박 시용이 토양특성 및 적겨자 생육에 미치는 영향)

  • Kim, Kab-Cheol;Ahn, Byung-Koo;Kim, Hyung-Gook;Jeong, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1022-1026
    • /
    • 2012
  • To evaluate the application level of expeller cake fertilizer (ECF), we have investigated soil chemical properties, leaf mineral contents and yield of red mustard in plastic film greenhouse. Four levels of fertilizer were applied as 50% (ECF 50), 75% (ECF 75), 100% (ECF 100) and 150% (ECF 150) by base $1,848kg\;kg^{-1}$ of ECF. In 2010, red mustard was planted on April 28 in silt loam soil and harvested on July 7. Commerical yields were measured 12 times from May 14 to July 7. Electrical conductivity ($3.40{\sim}3.54dS\;m^{-1}$), available $P_2O_5$ ($580{\sim}618mg\;kg^{-1}$) and exchangeable cations ($K^+$, $Ca^{2+}$ and $Mg^{2+}$) were tended to increase by the application of ECF. However, the range of those was not so big increasing amount. The content of T-N, K, Ca and P of red mustard leaves was $63.2{\sim}66.4g\;kg^{-1}$, $55.1{\sim}56.4g\;kg^{-1}$, $8.6{\sim}9.5g\;kg^{-1}$ and $5.7{\sim}6.3g\;kg^{-1}$, respectively. The nitrogen utilization rate of red mustard was 38~52%, and it was decreased with increased application of ECF. The yield of red mustard was 13,670 to $14,460kg\;ha^{-1}$ on the basis of application amount of ECF and the yield did not increased in spite of increased ECF. The optimum dose of application of ECF for cultivation of red mustard was from $924kg\;ha^{-1}$ (ECF 50) to $1,386kg\;ha^{-1}$ (ECF 75). Environment-friendly and economical amount of applied fertilizer is more important than yield for cultivation of red mustard.

A Study of Mo Back Electrode for CIGSe2 Thin Film Solar Cell (CIGSe2 박막태양전지용 Mo 하부전극의 물리·전기적 특성 연구)

  • Choi, Seung-Hoon;Park, Joong-Jin;Yun, Jeong-Oh;Hong, Young-Ho;Kim, In-Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.142-150
    • /
    • 2012
  • In this Study, Mo back electrode were deposited as the functions of various working pressure, deposition time and plasma per-treatment on sodalime glass (SLG) for application to CIGS thin film solar cell using by DC sputtering method, and were analyzed Mo change to $MoSe_2$ layer through selenization processes. And finally Mo back electrode characteristics were evaluated as application to CIGS device after Al/AZO/ZnO/CdS/CIGS/Mo/SLG fabrication. Mo films fabricated as a function of the working pressure from 1.3 to 4.9mTorr are that physical thickness changed to increase from 1.24 to 1.27 ${\mu}m$ and electrical characteristics of sheet resistance changed to increase from 0.195 to 0.242 ${\Omega}/sq$ as according to the higher working pressure. We could find out that Mo film have more dense in lower working pressure because positive Ar ions have higher energy in lower pressure when ions impact to Mo target, and have dominated (100) columnar structure without working pressure. Also Mo films fabricated as a function of the deposition time are that physical thickness changed to increase from 0.15 to 1.24 ${\mu}m$ and electrical characteristics of sheet resistance changed to decrease from 2.75 to 0.195 ${\Omega}/sq$ as according to the increasing of deposition time. This is reasonable because more thick metal film have better electrical characteristics. We investigated Mo change to $MoSe_2$ layer through selenization processes after Se/Mo/SLG fabrication as a function of the selenization time from 5 to 40 minutes. $MoSe_2$ thickness were changed to increase as according to the increasing of selenization time. We could find out that we have to control $MoSe_2$ thickness to get ohmic contact characteristics as controlling of proper selenization time. And we fabricated and evaluated CIGS thin film solar cell device as Al/AZO/ZnO/CdS/CIGS/Mo/SLG structures depend on Mo thickness 1.2 ${\mu}m$ and 0.6 ${\mu}m$. The efficiency of CIGS device with 0.6 ${\mu}m$ Mo thickness is batter as 9.46% because Na ion of SLG can move to CIGS layer more faster through thin Mo layer. The adhesion characteristics of Mo back electrode on SLG were improved better as plasma pre-treatment on SLG substrate before Mo deposition. And we could expect better efficiency of CIGS thin film solar cell as controlling of Mo thickness and $MoSe_2$ thickness depend on Na effect and selenization time.

Classification for Types of Damages Caused by Cold Stress at Different Young Spike Development Stages of Barley and Wheat (맥류의 유수발육기 저온장해유형과 피해시기 분류)

  • 구본철;박문웅;김기준;안종국;이춘우;윤의병
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.3
    • /
    • pp.252-261
    • /
    • 2003
  • Although the young spike of barley (Hordeum vulgare L.) or wheat (Triticum aestivum L.) is known as the most susceptible part to spring cold injury, the risk of cold injury is apt to be ignored in most breeding program due to the importance of early maturity. Based on these aspects, the types and inducing time, temperature conditions for induction and effects of cold injury on growth and yield in this study were investigated under greenhouse and field conditions through three years (1997-1999). In natural condition, low temperature around -2.4∼$-10.2^{\circ}C$ caused the death of plant. Several cold injury types such as partial degeneration of spike, partial discoloration of leaf, spike and awn, discoloration of culm and white spike were observed at low temperature around $-3.1^{\circ}C$. Low temperature around -2.4∼$-8.6^{\circ}C$ and 1.3-$7.6^{\circ}C$ caused degeneration and sterility of spike, respectively. Most materials were prepared to the spikelet foundation stage, spikelet differentiation stage, development stage of flower organ, booting stage and heading stage, which were known having risk for cold injury in field condition. Although most of the controlled stages were sensitive to the induced low temperature, booting stage was the most sensitive stage for cold injury. All of growth stages which were treated-heading stage, booting stage, development stage of flower organ, spikelet differentiation stage, spikelet foundation stage-were responded to low temperature treatment but the symptoms revealed were very specific according to the growth stages. Ears of plant in heading stage were discolored to white. Ears of plant in booting stage were degenerated in all or part of one. Plants in spikelet differentiation stage were sterile in all or part of one. When tried to detect the specific differences between normal and cold injured plants in appearance, spike length, distance between spike and flag leaf and the first internode length could be the critical points for occurrence of spike death caused by cold injury. In barley, the elongation of spike was stopped on 3.2cm after occurrence of spike degeneration, 4.7cm after occurrence of partial degeneration of spike, 5.0cm after occurrence of white spike. In wheat, it was stopped on 1.6cm after occurrence of stem death, 3.3cm after occurrence of spike degeneration, 8.3cm after occurrence of partial degeneration of spike, 8.1cm after occurrence of white spike, 7.5cm after partial discoloration of leaf and 9.3cm after partial discoloration of spike. The obtained results from low temperature treatment induced in growth chamber were similar to the field experiment, Beacuse the death of spikes was more when low temperature was treated two times than one times, the temperature should be upgrade to -3$^{\circ}C$ in order to get the same condition with field test.

Effects of Manufacturing Methods of Broiler Litter and Bakery By-product Ration for Ruminants on Physico-chemical Properties (육계분과 제과부산물을 이용한 반추가축용 완전혼합사료(TMR) 제조 시 가공처리 방법이 물리화학적 특성에 미치는 영향)

  • Kwak, W.S.;Yoon, J.S.;Jung, K.K.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.593-606
    • /
    • 2003
  • This study was conducted to develop effective manufacturing methods of a total mixed ration(TMR) composed of broiler litter(BL) and bakery by-product(BB) for ruminants. Five experiments included a small-scaled manufacture of TMR using a deepstacking method(Exp. 1), its pelletization(Exp. 2), its field-scaled manufacture(Exp. 3), a field-scaled manufacture using an ensiling method(Exp. 4), and a mixing process of deepstacked BL and BB prior to feeding(Exp. 5). BL and BB were mixed at a ratio which makes total digestible nutrients of the TMR 69%. For each experiment, temperature, appearance and physico-chemical properties were recorded and analyzed. The chemical composition data revealed that the mixture of BL and BB showed nutritionally additive balance which resulted from a considerable increase(P<0.05) of organic matter and a desirable decrease(P<0.05) of protein and fiber up to the requirement level for growing ‘Hanwoo’ steers. Deepstacking of BL and BB in Exp. 1 and 3 resulted in a sufficient increase of stack temperature for pasteurization, little chemical losses, appearance of white fungi on the surface, and partial charring due to excess stack temperature. For Exp. 2, its pelleting, which was successful using a simple, small-scaled pelletizer, resulted in a little loss(P<0.05) of organic matter and an increase(P<0.05) of indigestible protein(ADF-CP). Ensiling the mixture in Exp. 4 made little effect on chemical composition; however, one month of the ensiling period was not enough for favorable silage parameters. Deepstacking BL alone in Exp. 5 tended(P<0.1) to decrease true protein : NPN ratio and hemicellulose content and increase ADF-CP content due to the heat damage occurred. Deepstacking or ensiling of BL-BB mixtures and simple incorporating of BB into deepstacked BL prior to feeding could be practical and nutrients-preservative methods in TMR manufacture for beef cattle, although ensiling needed further hygienic evaluation.

Effect of Blue Color-deficient Sunlight on the Productivity and Cold Tolerance of Crop Plants (청색파장(靑色波長)영역이 결여된 태양광이 작물(作物)의 생산성(生産性) 및 내냉성(耐冷性)의 향상에 미치는 효과 Ⅰ. 광합성(光合成) 및 호흡(呼吸)의 전자전달계 활성(活性)의 변화)

  • Jung, Jin;Kim, Jong-Bum;Min, Bong-Ki
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.2
    • /
    • pp.141-148
    • /
    • 1986
  • The blue-light effect on the grown as well as on the physiological activity of some major horticultural plants in Korea has been investigated. The light quality used for the work was obtained from sunlight filtered by an orangecolored polyethylene film which removed about 70% of visible light in the spectral region of $350㎚{\sim}500㎚$. The film was developed in this laboratory especially for the work and named BCR film meaning blue color-removing film. The light environment in the plastic house which was built with BCR film provided plants with the blue color-deficient sunlight. Thus, the photobiological effect of blue light could be examined conversely by comparing with the effect of white sunlight in a conventional plastic house built with colorless polyethylene film. In a sense of applicability to horticulture, two remarkable effects of the blue color-deficient sunlight on plant physiology were observed: First, it enhanced to a great extent the growth activity of plants-pepper, cucumber, zucchini, tomato, and leaf lettuce at the vegetative stage as well as at the reproductive stage, as demonstrated by their yield which were in average $40{\sim}50%$ increased compared with the control (under white sunlight). Second, it improved significantly the cold tolerance of plants, as exhibited with their resistance to chilling during treatment in a cold chamber maintained at a temperature which caused chilling injury to the plants of control. The visualized effects were reflected on the physiological activity of cells on organelle level. Chloroplast isolated from the plant leaves grown under BCR film showed considerably stronger photosynthetic activity, as judged by the increased electron transport rate of illuminated chloroplast, than that from leaves grown under white PE film. Mitochondria from leaves grown under BCR film maintained normal respiration activity until temperature decreased to a few degree($^{\circ}C$) lower than the temperature which caused respiratory inhibition to mitochondria obtained from leaves of the control.

  • PDF

Miscibility and Specific Intermolecular Interaction Strength of PBI/PI Blends Depending on Polyimide Structure(II) - Blend Systems with PIs Synthesized by DSDA - (폴리이미드 구조변화에 의한 방향족 PBI/PI 블렌드의 상용성 및 상호작용의 세기(II) - DSDA로 합성한 PI들과의 블랜드들 -)

  • Ahn, Tae-Kwang
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.207-213
    • /
    • 1998
  • On the basis of the previous study[1], miscibility were investigated and intermolecular interaction strength for the miscibility were relatively compared for the blends poly{2,2-(m-phenylene)-5,5'-bibenzimidazole}(PBI) with two aromatic polyimides (PIs) synthesized by another dianhydride. Aromatic PAAs were prepared by the reaction of condensation of two diamines, 4,4'-methylene dianiline(4,4'-MDA) and 4,4'-oxydianiline(4,4'-ODA) with 3,3',4,4'-diphenylsulfone tetracarboxylic dianhydride(DSDA) using DMAc, and then converted into PIs after curing. PBI/PAA blends were prepared by solution blending. Cast films or precipitated powders of the PBI/PAA blends were cared at a high temperature to transform into PBI/PIs blends. Miscibility and specific intermolecular interaction for miscibility in the blends were investigated, and compared with previous polyimide structures of PBI/PIs blends [1]. Two blends, PBI/DSDA+4,4'-MDA(Blend-V) and PBI/DSDA+4,4'-ODA(Blend-VI), were found miscible : the evidences were optically clear films, synergistic single composition dependent $T_g{\prime}s$, and frequency shifts of N-H stretching band as much as $39{\sim}40cm^{-1}$, and of C=O stretching band near 1730 and $1780cm^{-1}$, 5~6 and $3{\sim}4cm^{-1}$, respectively. The specific intermolecular interactions existing between PBI and PIs were relatively analyzed with the area(A) formed between the $T_g{\prime}s$ of the measured and that of the calculated by the Fox equation at all compositions, the ${\kappa}$ values in Gordon-Taylor equation obtained from the measured $T_g{\prime}s$, and differences of the frequency shifts in the functional N-H and carbonyl stretching band. From the results, the area(A) and the ${\kappa}$ values for Blend-V and VI were smaller than those for Blend-III and IV used in previous study[1]. Differences of the frequency shifts in the functional groups(N-H and C=O) also showed similar tendency. Thus, specific intermolecular interaction strength in terms of hydrogen bonding of PBI/PI blends is dependent upon chemical structures of PIs, that is, PIs it seems that $SO_2$ group in dianhydride(DSDA) has weaker hydrogen bond strength than those of C=O in BTDA. In other words, it implies that the former occupied bulk space than the latter due to the sterric effect.

  • PDF