DOI QR코드

DOI QR Code

An Adjustment of Cloud Factors for Continuity and Consistency of Insolation Estimations between GOES-9 and MTSAT-1R

GOES-9과 MTSAT-1R 위성 간의 일사량 산출의 연속성과 일관성 확보를 위한 구름 감쇠 계수의 조정

  • Kim, In-Hwan (Dept. of Spatial Information Engineering, Pukyong National University) ;
  • Han, Kyung-Soo (Dept. of Spatial Information Engineering, Pukyong National University) ;
  • Yeom, Jong-Min (Satellite Information Research Center (SIRC), Korea Aerospace Research Institute (KARI))
  • 김인환 (부경대학교 공간정보시스템공학과) ;
  • 한경수 (부경대학교 공간정보시스템공학과) ;
  • 염종민 (한국항공우주연구원 위성정보연구센터)
  • Received : 2011.12.18
  • Accepted : 2012.01.30
  • Published : 2012.02.29

Abstract

Surface insolation is one of the major indicators for climate research over the Earth system. For the climate research, long-term data and wide range of spatial coverage from the data observed by two or more of satellites of the same orbit are needed. It is important to improve the continuity and consistency of the derived products, such as surface insolation, from different satellites. In this study, surface insolations based on Geostationary Operational Environmental Satellite (GOES-9) and Multi-functional Transport Satellites (MTSAT-1R) were compared during overlap period using physical model of insolation to find ways to improve the consistency and continuity between two satellites through comparison of each channel data and ground observation data. The thermal infrared brightness temperature of two satellites show a relatively good agreement between two satellites : rootmean square error (RMSE)=5.595 Kelvin; Bias=2.065 Kelvin. Whereas, visible channels shown a quite different values, but it distributed similar tendency. And the surface insolations from two satellites are different from the ground observation data. To improve the quality of retrieved insolations, we have reproduced surface insolation of each satellite through adjustment of the Cloud Factor, and the Cloud Factor for GOES-9 satellite is modified based on the analysis result of difference channel data. As a result, the insolations estimated from GOES-9 for cloudy conditions show good agreement with MTSAT-1R and ground observation : RMSE=$83.439W\;m^{-2}$ Bias=$27.296W\;m^{-2}$. The result improved accuracy confirms that the modification of Cloud Factor for GOES-9 can improve the continuity and consistency of the insolations derived from two or more satellites.

표면도달일사량은 전 지구시스템에 대한 기후 연구에 가장 중요한 요소 중 하나다. 기후 연구에서는 동일 지역을 관측하는 두 개 혹은 그 이상의 위성자료로부터 넓은 공간적 범위를 가지는 장기간의 데이터를 사용하는 것이 필요하다. 시간적 연속성을 가지는 서로 다른 위성으로부터 산출 된 표면도달일사량의 연속성과 일관성을 향상시키는 것은 매우 중요하다. 본 연구에서는 물리적 모델을 이용하여 GOES-9과 MTSAT-1R 위성의 중복 관측 기간 동안의 표면도달일사량을 산출하고, 두 위성의 채널자료와 실측치 비교를 통해 위성간의 연속성과 일관성을 향상시키는 방법을 연구하였다. 두 위성의 적외 채널 온도는 매우 잘 일치하는 경향을 보였다 : RMSE=5.595 Kelvin; Bias=2.065 Kelvin. 반면에, 가시채널은 다른 값의 분포를 보였지만 비슷한 경향을 보였다. 그리고 두 위성으로부터 산출 된 표면도달일사량은 실측치와 일치성이 낮았다. 표면도달일사량의 품질 향상을 위해 구름감쇠계수 조정을 통해 표면도달일사량 산출물을 재생산하였다. 그리고 채널 자료의 비교 분석을 통해 GOES-9 위성을 위한 구름감쇠계수를 생산하였다. 그 결과, 구름 효과를 고려한 GOES-9의 표면도달일사량 산출물은 MTSAT-1R과 실측치에 대해 매우 높은 일치성을 보였다 : RMSE=$83.439W\;m^{-2}$; Bias=$27.296W\;m^{-2}$. 구름감쇠계수 조정을 통해 향상 된 정확도는 두 개 이상의 위성으로부터 산출 된 표면도달일사량 산출물의 연속성과 일관성을 향상 시킬 수 있을 것이다.

Keywords

References

  1. 강치호, 안상일, 구인회, 2004. GOES-9 위성 영상을 이용한 특정 궤도 지점에서의 지구 투영, 항공우주기술, 3(1): 267-271.
  2. 염종민, 한경수, 이창석, 김도용, 2008. 표면도달일사량 검증 시 발생하는 시간 불일치 조정을 통한 정확한 일사량 검증: MTSAT-1R 자료 이용, 대한원격탐사학회지, 24(6): 605-612. https://doi.org/10.7780/kjrs.2008.24.6.605
  3. Gautier, C., G. Diak, and S. Masse, 1980. A simple physical model to estimate incident solar radiation at the surface from GOES satellite data, Journal of Applied Meteorology, 19: 1005-1012. https://doi.org/10.1175/1520-0450(1980)019<1005:ASPMTE>2.0.CO;2
  4. Gautier, C., G. Diak, and S. Masse, 1984. An investigation of the effects of spatially averaging satellite brightness measurements on the calculations of insolation, Journal of Applied Meteorology, 23: 1380-1386. https://doi.org/10.1175/1520-0450(1984)023<1380:AIOTEO>2.0.CO;2
  5. Kawai, Y. and H. Kawamura, 2005. Validation and improvement of satellite-derived surface solar radiation over the Northwestern Pacific Ocean, Journal of Oceanography, 61: 79-89. https://doi.org/10.1007/s10872-005-0021-7
  6. Kawamura, H., S. Tanahashi, and T. Takahashi, 1998. Estimation of insolation over the Pacific Ocean off the Sanriku Coast, Journal of Oceanography, 54: 457-464. https://doi.org/10.1007/BF02742448
  7. Kizu, S., 1995. A study on thermal response of ocean surface layer to solar radiation using satellite sensing, Doctoral Thesis, Tohoku University.
  8. Otkin, J.A., M.C. Anderson, J.R. Mecikalski, and G.R. Diak, 2005. Validation of GOES-based insolation estimates using data from the U.S. climate reference network, Journal of Hydrometeorology, 6: 460-475. https://doi.org/10.1175/JHM440.1
  9. Saunders, R.W. and K.T. Kriebel, 1998. An improved method for detecting clear sky and cloudy radiances from AVHRR data, International Journal of Remote Sensing, 9: 123-150.
  10. Spencer, J.W., 1971. Fourier series representation of the position of the sun, Search, 2(5): 172.
  11. Tanahashi, S., H. Kawamura, T. Matsuura, T. Takahashi, and H. Yusa, 2001. A system to distribute satellite incident solar radiation in real-time, Remote Sensing of Environment, 75: 412-422. https://doi.org/10.1016/S0034-4257(00)00183-8
  12. Yeom, J.-M. and K.-S. Han, 2010. Improved estimation of surface solar insolation using a neural network and MTSAT-1R data, Computers & Geosciences, 36: 590-597. https://doi.org/10.1016/j.cageo.2009.08.012
  13. Yeom, J.-M., K.-S. Han, and J.-J. Kim, 2011. Evaluation on Penetration Rate of Cloud for Incoming Solar Radiation Using Geostationary Satellite Data, Asia-Pacific Journal of Atmospheric Sciences, Accepted.
  14. Yeom, J.M., K.S. Han, Y.Y. Park, and Y.S. Kim, 2006. A Representativity Test on the Pyranometer Measurement of Surface Solar Insolation Through Satellite Observation, Korean Journal of Remote Sensing, 22(5): 389-396. https://doi.org/10.7780/kjrs.2006.22.5.389

Cited by

  1. Estimation of Global Horizontal Insolation over the Korean Peninsula Based on COMS MI Satellite Images vol.29, pp.1, 2013, https://doi.org/10.7780/kjrs.2013.29.1.14