• Title/Summary/Keyword: 온도성층화

Search Result 72, Processing Time 0.027 seconds

Effect of Thermal Stratification for Reducing Pressure Rise Rate in HCCI Combustion Based on Multi-zone Modeling (Multi Zone Modeling을 이용한 온도 성층화의 효과를 갖는 예혼합압축자기착화엔진의 압력상승률 저감에 대한 모사)

  • Kwon, O-Seok;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.32-39
    • /
    • 2009
  • The HCCI engine is a next generation engine, with high efficiency and low emissions. The engine may be an alternative to SI and DI engines; however, HCCI's operating range is limited by an excessive rate of pressure rise during combustion and the resulting engine knock in high-load. The purpose of this study was to gain a understanding of the effect of only initial temperature and thermal stratification for reducing the pressure-rise rate in HCCI combustion. And we confirmed characteristics of combustion, knocking and emissions. The engine was fueled with Di-Methyl Ether. The computations were conducted using both a single-zone model and a multi-zone model by CHEMKIN and modified SENKIN.

Study on the Effect of Thermal Stratification on DME/n-Butane HCCI Combustion (열적성층화가 DME/n-Butane 예혼합압축자기착화연소에 미치는 영향에 관한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1035-1042
    • /
    • 2010
  • The thermal stratification effect has been thought as one of the way to avoid dramatically generating the heat from HCCI combustion. We investigate the effect of thermal stratification on HCCI combustion fueled by DME and n-Butane. The thermal stratification occurs in a combustion chamber of a rapid compression machine with premixture by buoyancy effect that is made of fuel and air. The premixture is then adiabatically compressed, and during the process, the in-cylinder gas pressure is measured and two-dimensional chemiluminescence images are prepared and analyzed. Under the thermal stratification, the LTR starting time and the HTR starting time are advanced than that of homogeneous case. Further, the LTR period and the luminosity duration under homogeneous conditions are shorter than the corresponding quantities under stratified conditions. Additionally, under stratified conditions, the brightest luminosity intensity is delayed longer than that of homogeneous condition.

The A Study on the Non-powered Circulator to Solve the Temperature Stratification of a Convection Heating Device during Winter Using 3D Printer (3D프린터를 이용한 겨울철 대류난방기구의 온도 성층화 해결을 위한 무동력 서큘레이터 디자인에 관한 연구)

  • Kang, Hee-Ra
    • Journal of Digital Convergence
    • /
    • v.19 no.6
    • /
    • pp.285-292
    • /
    • 2021
  • Due to the recent Corona 19 outbreak, camping culture is rapidly drawing attention from many people. Convective heating devices, which many campers use during winter, have the temperature stratification problem. To solve this problem, various power circulators are being used. Several non-powered circulators are also on sale, but the direction of the circulator is designed to be at the right angle relative to the convection heating mechanism and the circulator does not properly play the role of air circulation. To solve this problem, a 3D printer is used to design a non-powered circulator in the same direction as the convection heating mechanism. Electricity is generated without power using Peltier element and ceramic paper and the circulator is produced to withstand heat using HTPLA-CF filament. This study presents a method to solve the temperature stratification problem through efficient convective circulation. In addition, the purpose of this study is to manufacture products at a lower cost by using a 3D printer.

Methods to Characterize the Thermal Stratification in Thermal Energy Storages (열에너지 저장소 내 열성층화를 평가하기 위한 기법)

  • Park, Dohyun;Ryu, Dong-Woo;Choi, Byung-Hee;SunWoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.78-85
    • /
    • 2013
  • A primary objective in creating a stratified thermal storage is to maintain the thermodynamic quality of energy, so thermally stratified energy can be extracted at temperatures required for target activities. The separation of the thermal energy in heat stores to layers with different temperatures, i.e., the thermal stratification is a key factor in achieving this objective. This paper introduces different methods that have been proposed to characterize the thermal stratification in heat stores. Specifically, this paper focuses on the methods that can be used to determine the ability of heat stores to promote and maintain stratification during the process of charging, storing and discharging. In addition, based on methods using thermal stratification indices, the degrees of stratification of stored energy in Lyckebo rock cavern in Sweden were compared and the applicability of the methods was investigated.

Long-term Simulation of Water Temperature in Soyanggang Reservoir in Response to RCP 4.5 Climate Scenario (RCP 4.5 기후 시나리오에 따른 소양호 수온 변화 장기 모의)

  • Yun, Yeojeong;Park, Hyungseok;Chung, Sewoong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.265-265
    • /
    • 2019
  • 기후변화로 의한 기온의 상승은 가뭄, 홍수와 같은 재해를 일으킬 뿐만 아니라 깊은 호수나 저수지와 같은 수자원에도 용존 산소, 물질, 영양소 및 식물플랑크톤의 수직적 분포 등과 같은 다양한 부분에 영향을 미친다. 본 연구의 목적은 SWAT, HEC-ResSim 및 CE-QUAL-W2(이하 W2)모델을 사용하여 미래의 기후 변화에 따른 소양호의 수온, 성층강도 및 열적 안정성의 변화를 장기 예측하고 그 영향을 평가하는데 있다. W2 모델의 보정은 2005 년부터 2015 년까지의 실측 과거 데이터를 이용하여 보정하였고 기후변화 시나리오는 IPCC의 AR5 RCP 4.5 시나리오를 사용하였다. 기후자료는 GCM 모델인 HadGEM2-AO 결과를 상세화하여 모의기간의 자료를 생성하였다. SWAT모델을 이용하여 모의기간인 2016 년부터 2070 년까지 일단위로 저수지 유입을 예측했으며 HEC-ResSim모델을 이용하여 소양강댐 저수지 운영 조건에 따라 저수지 방류량 및 수위 변화를 모의하였다. 수온 해석을 위해 W2를 적용하여 저수지의 장기간의 수온 변화를 예측하였다. 결과적으로 대기 온도는 $0.0279^{\circ}C/year$(p < 0.05) 상승할 것으로 예측되었으며, 동일기간 상층(수면으로부터 5m 깊이)과 하층 (바닥으로부터 5m 높이) 수온은 각각 $0.0191^{\circ}C$/년(p < 0.05) 및 $0.008^{\circ}C$/년(p < 0.05) 상승할 것으로 예측되었다. 모의된 수온을 계절별로 분석했을 때 상층수온은 여름철 가장 큰 폭으로 상승하였으며 하층의 경우 겨울철에 가장 큰 폭으로 상승하였다. 계절별 상-하층 수온의 차는 여름이 가장 컸으며, 겨울에 온도차가 가장 작았다. 또한 미래 온도의 상승에 따라, 소양호의 성층 강도가 강해지는 경향을 보였으며 상층 및 하층의 온도차 $5^{\circ}C$를 기준으로 성층이 형성되는 기간은 큰 변동이 없었으나 소멸되는 시점이 점점 늦어지는 추세를 보여 성층 형성 기간이 길어지는 것으로 나타났다. 저수지 표면의 수온 상승은 식물플랑크톤의 계절 성장률에 영향을 미쳤는데, 특정 조건에서 규조류는 최적 성장 범위를 벗어나는 고온 조건에서 성장속도가 감소하였으나 녹조류와 남조류의 출현 시기가 빨라지며 장기화될 것으로 예측되었다.

  • PDF

The analytical research of thermal stratification phenomena in the LOX tank of launch vehicle (우주발사체 액체산소 탱크 내에서의 열적 성층화 현상에 대한 해석적 연구)

  • Chung Yong-Gahp;Kil Gyoung-Sub;Kwon Oh-Sung;Kim Young-Mog;Cho Nam-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.178-183
    • /
    • 2004
  • Thermal stratification phenomena in the liquid oxygen tank of launch vehicle is caused by heat influx from ambient and non-equilibrium heat and mass transfer in the cryogenic tank. The thermal stratification study is needed for designing vent system, tank insulation, pump inlet. In this paper by investigating buoyancy driven boundary layer flow by side wall heating, one dimensional analysis of thermal stratification is peformed. thermal gradient is described with time.

  • PDF

Comparison of DME HCCI Operating Ranges for the Thermal Stratification and Fuel Stratification based on a Multi-zone Modeling (Multi-zone 모델링을 통한 온도성층화와 농도성층화가 존재하는 DME HCCI 엔진의 운전영역에 관한 수치해석연구)

  • Jeong, Dong-Won;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.35-41
    • /
    • 2011
  • This work investigates the potential of in-cylinder thermal stratification and fuel stratification for extending the operating ranges in HCCI engines, and the coupling between thermal stratification and fuel stratification. Computational results areemployed. The computations were conducted using both a custom multi-zone version and the standard single-zone version of the Senkin application of the CHEMKINII kinetics rate code, and kinetic mechanism for di-methyl ether (DME). This study shows that the potential of thermal stratification and fuels stratification for extending the high-load operating limit by a staged combustion event with reduced pressure-rise rates is very large. It was also found that those stratification offers good potential to extend low-load limit by a same mechanism in high-load. However, a combination of thermal stratification and fuel stratification is not more effective than above stratification techniques for extending the operating ranges showing similar results of fuel stratification. Sufficient condition for combustion (enough temperature for) turns misfire in low-load limit to operate engines, which also leads to knock in high-load limit abruptly due to the too high temperature with high. DME shows a potential for maximizing effect of stratification to lower pressure-rise rate due to the characteristics of low-temperature heat release.

Global Temperature Trends of Lower Stratosphere Derived from the Microwave Satellite Observations and GCM Reanalyses (마이크로파 위성관측과 모델 재분석에서 조사된 전지구에 대한 하부 성층권 온도의 추세)

  • Yoo, Jung-Moon;Yoon, Sun-Kyung;Kim, Kyu-Myong
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.388-404
    • /
    • 2001
  • In order to examine the relative accuracy of satellite observations and model reanalyses about lower stratospheric temperature trends, two satellite-observed Microwave Sounding Unit (MSU) channel 4 (Ch 4) brightness temperature data and two GCM (ECMWF and GEOS) reanalyses during 1981${\sim}$1993 have been intercompared with the regression analysis of time series. The satellite data for the period of 1980${\sim}$1999 are MSU4 at nadir direction and SC4 at multiple scans, respectively, derived in this study and Spencer and Christy (1993). The MSU4 temperature over the globe during the above period shows the cooling trend of -0.35 K/decade, and the cooling over the global ocean is 1.2 times as much as that over the land. Lower stratospheric temperatures during the common period (1981${\sim}$1993) globally show the cooling in MSU4 (-0.14 K/decade), SC4 (-0.42 K/decade) and GEOS (-0.15 K/decade) which have strong annual cycles. However, ECMWF shows a little warming and weak annual cycle. The 95% confidence intervals of the lower stratospheric temperature trends are greater than those of midtropospheric (channel 2) trends, indicating less confidence in Ch 4. The lapse rate in the trend between the above two atmospheric layers is largest over the northern hemispheric land. MSU4 has low correlation with ECMWF over the globe, and high value with GEOS near the Korean peninsula. Lower correlations (r < 0.6) between MSU4 and SC4 (or ECMWF) occur over $30^{\circ}$N latitude belt, where subtropical jet stream passes. Temporal correlation among them over the globe is generally high (r > 0.6). Four kinds of lower stratospheric temperature data near the Korean peninsula commonly show cooling trends, of which the SC4 values (-0.82 K/decade) is the largest.

  • PDF

A Numerical Study on Combustion Characteristics of HCCI Engine with Stratification Condition of EGR Exhaust Gases (EGR 배기가스의 성층화 조건에 따른 HCCI 엔진의 연소 특성에 관한 수치해석 연구)

  • Lee, Won-Jun;Lee, Seung-Ro;Lee, Chang-Eon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.46-52
    • /
    • 2011
  • Homogeneous charge compression ignition (HCCI) is the best concept able to provide low NOx and PM in diesel engine emissions. This new alternative combustion process is mainly controlled by chemical kinetics in comparison with the conventional combustion in internal combustion engine. However, HCCI engine's operation have an excessive rate of pressure rising during the combustion process. In this study, stratification condition of EGR exhaust gases was used to reduce the pressure rising during the combustion process in HCCI engine. Also, combustion characteristics and emissions characteristics were investigated using the detailed diesel surrogate reaction mechanism.

An Experimental Study on Thermal Stratification of Pressurized Plenum Underfloor Air Distribution System during Cooling (가압식 바닥급기 시스템의 여름철 성층화 경향에 관한 실험적 연구)

  • Kim, Dong-Hee;Yu, Ki-Hyung;Cho, Dong-Woo;Seo, Jung-Seok;Han, Sung-Phil
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.340-345
    • /
    • 2007
  • The underfloor air distribution system has been attracting to architects and building owners as one of valuable system for the renovated and newly office building. In this paper, we discussed the thermal stratification profile of pressurized plenum underfloor air distribution(UFAD) according to indoor setting temperature, diffuser number, diffuser type. For this, the space of office building(H corp.) is selected for measuring the air volume of underfloor diffuser and vertical temperature profile. As a result, the thermal stratification profile is influenced by the number and type of the underfloor diffuser and thermal storage character of the underfloor. Whereas indoor setting temperature have a lower significant impact on thermal stratification.

  • PDF