• Title/Summary/Keyword: 온도분포해석

Search Result 965, Processing Time 0.031 seconds

Groundwater-Stream Water Interaction Induced by Water Curtain Cultivation Activity in Sangdae-ri Area of Cheongju, Korea (청주 상대리지역에서 수막재배가 지하수-하천수 상호작용에 미치는 영향)

  • Moon, Sang-Ho;Kim, Yongcheol;Jeong, Youn-Young;Hwang, Jeong
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.105-120
    • /
    • 2016
  • Most of riverside in Korea, in case of application of water curtain cultivation (WCC) technique, has been inveterately suffering from the gradual drawdown of groundwater level and related shortage of water resources during the WCC peak time. We believe that the water resources issue in these riverside areas can be effectively solved when the interaction between groundwater and nearby surface water is well understood. To investigate the connection between stream and ground water, and the influence of stream water on the nearby aquifer, this study examined the water temperature and oxygen and hydrogen stable isotopic compositions. The study area is well-known strawberry field applying the WCC technique in Sangdae-ri, Gadeok-myon, Cheongju City, and the sampling was done from February 2012 through June 2014 for stream and ground water. Some groundwater wells near stream showed big temporal variations in water temperature, and their oxygen and hydrogen stable isotopes showed similar compositions to those of adjacent stream water. This indicates that the influence of stream water is highly reflected in the stable isotopic composition of groundwater. Four cross-sectional lines from stream to hillside were established in the study area to determine the spatial differences in water quality of wells. At the late stage of WCC in February to March, groundwater of wells in line with short cross-sectional length showed the narrow range of isotopic compositions; however, those in the long cross-sectional line showed a wide compositional range. It was shown that the influence of the stream water at the late WCC stage have reached to the distance of 160 to 165 m from stream line, which is equivalent to the whole length and one-third point in each short and long cross-sectional line, respectively. Therefore, the wide compositional range in the long cross-sectional lines was not only due to the influence of stream water, but apparently resulted from the change of relative impact of each groundwater supplying from two or more aquifers. In view of stable isotopic compositions, there seems to be three different aquifers in this study area, which is competing for dominance of water quality in wells at each period of WCC.

Thermal history of the Jecheon granite pluton in the Ogcheon Fold Belt, South Korea (남한의 옥천습곡대에 분포되어 있는 제천화강암체의 열역사)

  • Jin Myung-Shik;Kim Seong-Jae;Shin Seong-Cheon;Choo Seung-Hwan;Chi Se-Jung
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 1992
  • Whole rock and mineral ages for the Jecheon Granite distributed in the Ogcheon Fold Belt were dated by three radiometric methods, and its thermal history was elucidated as follows, on the basis of isotopic age data. Rb and Sr isotopic compositions of three whole rock and seven mineral concentrates made an isochron of 202.7${\pm}$ 1.9 Ma with a strontium initial ratio of 0.7140. Different age data of twelve mineral concentrates agree closely with the retention temperature of each mineral in K-Ar and Fission Track methods. The Jecheon granitic magma was generated by partial melting of crustal materials (S-type), or by mixins between mantle and crustal materials, intruded into the katazone or mesozone (7∼9 km) of the Ogcheon Fold Belt, at least in the Early Jurassic (about 203 Ma), and then crystallized and cooled down rapidly from about 600$^{\circ}C$ to 300$^{\circ}C$ (more than 20$^{\circ}C$/Ma), owing to thermal differences between the magma and the wall-rock. During the Middle to Late Jurassic (190∼140 Ma), the cooling of the granite was likely to stop and keep thermal equilibrium with the wall-rock. The severe tectonism associated with igneous activities and active weathering on the surface in Early to Late Cretaceous time (140∼70 Ma) might have accelerated the granite pluton to uplift rapidly (40∼60 m/Ma in average) up to 3∼4 km and cooled down from 300$^{\circ}C$ to 200$^{\circ}C$ (1.4 $^{\circ}C$/Ma). The granite pluton was likely to keep different uplifting and cooling rate of about 120 m/Ma and 5$^{\circ}C$/Ma in average from the Late Cretaceous to Early Tertiary (70∼50 Ma), and about 60 m/Ma and 2$^{\circ}C$/Ma in average from about 50 Ma up to the present, respectively.

  • PDF

램제트 엔진에서의 화염 전파와 비정상 연소 현상에 관한 수치해석

  • ;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.10-10
    • /
    • 2000
  • 램제트 엔진은 비추력이 높고 추력 레벨은 낮으므로, 2단 추진기관에 적합한 추진 시스템이다. 1단-추진기관의 작동이 끝나고, 2단 램제트 엔진이 점화 후 안정된 연소에 도달되기까지 비행체의 속도는 항력에 의하여, 초당 약 마하수 0.1 정도씩 감소된다. 1단 연소 후 2단 램제트로 전환되는 지연시간이 길수록 1단에서 요구되는 종말 가속도는 증가되므로, 1단이 차지하게되는 부피는 증가되고 비행체의 크기 또한 늘어나게 된다. 따라서 1단에서 2단 램제트로 천이되는데 소요되는 시간을 가능한 짧게 하는 것이 효과적이다. 그러나 램제트 엔진의 특성상 선결되어야할 다음과 같은 여러 문제들이 있다. 첫째, 1단 작동 시 공기 흡입구와 연소실은 차단벽으로 분리되어 있다가, 1단 연소후 차단막이 제거되어 외부공기가 램제트 연소실로 흡입된다. 흡입되는 공기는 흡입구의 형상에 의하여 램 압축되지만 초음속으로 연소실을 통과하게된다. 연료 주입 구에서 공급되는 연료는 연소실에서 유동의 흐름방향(streamline)에 따라서 연소실로 확산되는데, 연소되기 전에는 유속이 빠르게 노즐로 빠져 나가므로 램제트 연료가 재순환 구역(recirculation zone)으로 침투하는데 쉽지가 않다. 둘째, 연소실 입구에서 발생되는 와류 (ring vortex)는 1단 연료의 고온 연소 가스를 연소실로 확산시키는데, 비 균일한 온도 분포를 유발하여 램제트 연료의 점화에너지가 공급되는 시간이 적당하지 않을 경우 균일한 화염 전파에 악영향을 준다. 셋째, 연소실에서의 빠른 유동 조건은 연료가 연소실에 머무를 수 있는 시간을 감소시키며, 연소실 입구에서 강한 전단 응력이 발생되어 화염이 안정화되는데 악 영향을 미치게된다. 본 논문은 공기 흡입구, 연소실 및 노즐을 통합하여 수치해석을 하였으며 열유동/점화/연소등의 미케니즘을 이해하고, 주요 인자들 중 와류의 영향에 초점을 맞추었다.다고 판단되며 배기 가스 자체에 대기 공기중에 함유되어 있던 습기가 얼어붙는(Icing화) 문제가 발생하기 때문에 배기가스의 Icing을 방지하기 위하여 압축기 끝단에서 공기를 추출하여 배기부분에 송출할 필요성이 있는 것으로 판단되었다. 출구가스의 기체 유동속도가 매우 빠르므로 (100-l10m.sec) 이를 완화하기 위한 디퓨저의 설계가 요구된다고 판단된다. 또 연소기 후방에 물을 주입하는 경우 열교환기 및 기타 부분품에 발생할 수 있는 부식 및 열교환 효율 저하도 간과할 수 없는 문제로 파악되었다. 이러한 기술적 문제가 적절히 해결되는 경우 비활성 가스 제너레이터는 민수용으로는 대형 빌딩, 산림, 유조선 등의 화재에 매우 적절히 사용되어 질 수 있을 뿐 아니라 군사적으로도 군사작전 중 및 공군 기지의 화재 그리고 지하벙커에 설치되어 있는 고급 첨단 군사 장비 등의 화재 뿐 아니라 대간첩작전 등에 효과적으로 활용될 수 있을 것으로 판단된다.가 작으며, 본 연소관에 충전된 RDX/AP계 추진제의 경우 추진제의 습기투과에 의한 추진제 물성 변화는 미미한 것으로 나타났다.의 향상으로, 음성개선에 효과적이라고 사료되었으며, 이 방법이 편측 성대마비 환자의 효과적인 음성개선의 치료방법의 하나로 응용될 수 있으리라 생각된다..7%), 혈액투석, 식도부분절제술 및 위루술·위회장문합술을 시행한 경우가 각 1례(2.9%)씩이었다. 13) 심각한 합병증은 9례(26.5%)에서 보였는데 그중 식도협착증이 6례(17.6%), 급성신부전증 1례(2.9%), 종격동기흉과 폐염이 병발한 경우와 폐염이 각 1례(2.9%)였다. 14) 식도경 시행회수는 1회가 17례(54.8%), 2회가 9례(29.0%), 3회 이상이 5례(16.1%)였다.EX>$IC_{50}$/ 값이 210 $\mu\textrm{g}$/$m\ell$로서 효과적

  • PDF

Analysis of Apparent Fracture Toughness of a Thick-Walled Cylinder with an FGM Coating at the Inner Surface Containing a Radial Edge Crack (반경방향의 모서리 균열을 갖고 내면이 경사기능재료(FGM)로 코팅된 두꺼운 실린더의 겉보기 파괴인성해석)

  • Afsar, A.M.;Rasel, S.M.;Song, J.I.
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • This study analyzes the apparent fracture toughness of a thick-walled cylinder with a functionally graded material (FGM) coating at the inner surface of the cylinder. The cylinder is assumed to have a single radial edge crack emanating from its inner surface. The crack surfaces and the inner surface of the cylinder are subjected to an internal pressure. The incompatible eigenstrain developed in the cylinder due to nonuniform coefficient of thermal expansion as a result of cooling from sintering temperature is taken into account. Based on a method of evaluating stress intensity factor introduced in our previous study, an approach is developed to calculate apparent fracture toughness. The approach is demonstrated for a cylinder with a TiC/$Al_{2}O_{3}$ FGM coating and some numerical results of apparent fracture toughness are presented graphically. The effects of material distribution profile, cylinder wall thickness, application temperature, and coating thickness on the apparent fracture toughness are investigated in details. It is found that all of these factors play an important role in controlling the apparent fracture toughness of the cylinder.

The examination of application possibility and development of new welding joint shape for aluminum alloy (Al어선 선체용접부의 신형상 개발 및 적용 가능성 검토)

  • Jong-Myung Kim;Chong-In Oh;Han-Sur Bang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.99-107
    • /
    • 2001
  • Manufacture of fishing vessel is needed the effective material for light, strength, fire and corrosion of water in order to improve durability by high-speed and fishing. These fishing vessel can be divided into FRP and AI alloys fishing vessel. FRP fishing vessel is light and effective for strength but highly ignited and susceptible to heat during the manufacturing ship by-produce noxious component for human. In the case of a scrapped ship, it cause environmental pollution. On the other hand, aluminum is a material in return for FRP and has merit of high-strength and lightness. It's more heat proof and durable than FRP and superior to prevent from corrosion. Al alloys fishing vessel development is rising as an urgent matter. But, al alloy has some defect of bad weldability, welding transformation, cracks and overcost of construction. Therefore this study is to develop the new welding joint shape solving aluminum defects and mechanical behavior. First of all, strength was compared and reviewed by analysis of plate, stiffen plate, new model simplified by using plate theory. On the base of this result, plate and new model of temperature distribution, weld residual stress and strength of tensile, compressive force were compared and reviewed by finite element computer program has been developed to deal with heat conduction and thermal elasto plastic problem. Also, new model is proved application possibility and excellent mechanic by strength comparison is established to tensile testing result.

  • PDF

Preparation of Al/RDX/AP Energetic Composites by Drowning-out/Agglomeration and Their Thermal Decomposition Characteristics (결정화/응집에 의한 구형 Al/RDX/AP 에너지 복합체 제조 및 그 열분해 특성)

  • Lee, Jeong-Hwan;Shim, Hong-Min;Kim, Jae-Kyeong;Kim, Hyoun-Soo;Koo, Kee-Kahb
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.214-220
    • /
    • 2017
  • The spherical Al/RDX/AP composites with an average size of $550{\mu}m$ were successfully prepared by drowning-out/agglomeration (D/A) process. The surface morphology and dispersion of Al particles of those composites were investigated using SEM and EDS (energy dispersive spectrometry). As a result of thermal analysis, the onset temperature of thermal decomposition of the Al/RDX/AP composites by the D/A process was found to decrease about $50^{\circ}C$ and their thermal stability was shown to be relatively enhanced due to the increase of activation energy compared to those of using the physical mixing method. In the first decomposition region of AP, Prout-Tompkins model was shown to describe well the thermal decomposition of both composites by the physical mixing and D/A process. On the other hand, in the second decomposition region of AP, the decomposition mechanisms of composites by the physical mixing and D/A process were explained by the zero-order and contracting volume model, respectively.

A Study on the Properties Analysis of an Iron Fittings Type CSST Damaged by the PCITS (PCITS에 의해 소손된 강이음쇠형 CSST의 특성 해석에 관한 연구)

  • Lee, Jang-Woo;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.121-127
    • /
    • 2016
  • This study analyzed the structural and electrical characteristics of an iron fittings type Corrugated Stainless Steel Tubing (CSST) damaged by the Primary Current Injection Test System (PCITS). CSST consists of cladding, tube, nuts, clamp ring, flare cap, socket, and ball valve. For an evaluation of the dielectric withstand voltage, the area between the live part and non-live part of the CCST shall withstand a voltage of 220 V AC for one minute. For an evaluation of the insulation performance by 500 V DC, it is required that the insulation exceed more than $1M{\Omega}$ before the temperature rise test, $0.3M{\Omega}$ after the test. Although the average resistance of the product was $11.5m{\Omega}$, that of the product damaged at a current of 130 A by the PCITS was $11.50m{\Omega}$. Furthermore, parts of the cladding were melted and black smoke appeared when a current of 130 A applied for 10 s. After 60 s, most parts were heated and turned red. At 120 s, the parts that turned red had widened. Although it did not form a normal distribution because the P value was 0.019 with a confidential interval of 95%, it revealed outstanding characteristics with an AD (Anderson-Darling) value of 0.896 and a standard deviation of 0.5573.

The Growth of $MgO:LiNbO_3$ Single Crystal by Czochralski Method and its Density Measurement (Czochralski법에 의한 $MgO:LiNbO_3$단결정 성장과 밀도 측정)

  • Kim, Il-Won;Park, Bong-Chan;Kim, Gap-Jin
    • Korean Journal of Crystallography
    • /
    • v.4 no.2
    • /
    • pp.74-85
    • /
    • 1993
  • Single crystals of LiNbO3 have found extensive application in electro-optic and nonlinear optic devices. However, laser-induced refartive index inhomogeneities, which have been labeled opical damage impose limits on device optical damage in LiNbO3 is imporved if more than 4.5 rml% MgO is added to the melt The laser damage thrueshold increased as much as 100 times better then that of undoped crystals. The MgO doped cystal has thus been urterlsiv81y studied since then. In the study, Mgo:LiNbOs(MLA) single crystals dopsd with 0, 2.5, 5.0, 7.5, 10.0 mol% MgO have been grown by the czocrualski technique. The metls were prepared in the platinum crluible and 15∼20mm diameter crystals were grown with a length of 20∼30mm in a resitance heater. The growth rate was 2.5mm/hr, the rotation speed 15rpn. Before sawing MLN single crystals were annealed for 24 hours under atmosphere at a temperature of 1080℃. After sawing, we have found an annual ring cross section of MNA crystals only in the direction of perpendicilar to the c-axis. Nonuniform dispusion of MgO was pointed out that the cuties of the state of oxide were strongly affected by oxygen partial pressure in.

  • PDF

Thermal Energy Balance Analysis of a Packed Bed for Rock Cavern Thermal Energy Storage (충전층을 이용한 암반공동 열에너지저장시스템의 열에너지 수지 분석)

  • Park, Jung-Wook;Ryu, Dongwoo;Park, Dohyun;Choi, Byung-Hee;Synn, Joong-Ho;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.241-259
    • /
    • 2013
  • A packed bed thermal energy storage (TES) consisting of solid storage medium of rock or concrete through which the heat transfer fluid is circulated is considered as an attractive alternative for high temperature sensible heat storage, because of the economical viability and chemical stability of storage medium and the simplicity of operation. This study introduces the technologies of packed bed thermal energy storage, and presents a numerical model to analyze the thermal energy balance and the performance efficiency of the storage system. In this model, one dimensional transient heat transfer problem in the storage tank is solved using finite difference method, and temperature distribution in a storage tank and thermal energy loss from the tank wall can be calculated during the repeated thermal charging and discharging modes. In this study, a high temperature thermal energy storage connected with AA-CAES (advanced adiabatic compressed air energy storage) was modeled and analyzed for the temperature and the energy balance in the storage tank. Rock cavern type TES and above-ground type TES were both simulated and their results were compared in terms of the discharging efficiency and heat loss ratio.

Characteristics of Particle Flow and Heat Transfer in Liquid-Particle Swirling Fluidized Beds (액체-입자 Swirling 유동층에서 유동입자 흐름 및 열전달 특성)

  • Son, Sung-Mo;Kang, Suk-Hwan;Kang, Yong;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.505-512
    • /
    • 2006
  • Characteristics of particle holdup and heat transfer were investigated in a liquid-particle swirling fluidized bed whose diameter was 0.102 m and 2.5 m in height. Effects of liquid velocity, particle size and swirling liquid ratio($R_s$) on the particle holdup and immersed heater-to-bed overall heat transfer coefficient were examined. The particle holdup increased with increasing particle size and swirling liquid ratio but decreased with increasing liquid velocity.The local particle holdup was relatively high in the region near the heater when the $R_s$ value was 0.1~0.3, but the radial particle holdup was almost uniform when the $R_s$ value was 0.5, whereas, when the $R_s$ value was 0.7, the local particle holdup was relatively low in the region near the heater. The heat transfer characteristics between the immersed heater and the bed was well analyzed by means of phase space portraits and Kolmogorov entropy(K) of the time series of temperature difference fluctuations. The phase space portraits of temperature difference fluctuations became stable and periodic and the value of Kolmogorov entropy tended to decrease with increasing the value of $R_s$ from 0.1 to 0.5. The Kolmogorov entropy exhibited its maximum value with increasing liquid velocity. The value of overall heat transfer coefficient(h) showed its maximum value with the variation of liquid velocity, bed porosity or swirling liquid ratio, but it increased with increasing particle size. The value of K exhibited its maximum at the liquid velocity at which the h value attained its maximum. The particle holdup and overall heat transfer coefficient were well correlated in terms of dimensionless groups of operating variables.