• Title/Summary/Keyword: 온도분포해석

Search Result 965, Processing Time 0.033 seconds

The improvement method for power plant boiler temperature nonuniformity of heat transfer tube bank flow path (발전용 보일러 전열 튜브 유로내 온도분포 불균일 개선기법)

  • Jung, Hoon;Kim, Bum-Shin;Jang, Suck-Won;Ahn, Yeon-Shik;Park, Gun-Bok;Whang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.837-841
    • /
    • 2001
  • Almost all power plant boiler has temperature distribution nonuniformity problem in heat transfer tube flow path. It can cause hot spot damage of superheated or reheated heat transfer section and reduce maintenance schedule when nonuniformity is severe. There are two solutions for improvement temperature nonuniformity. one is change of gas flow distribution of gas path and the other is contorl steam flow in tube bank. Of course, first method is very difficulty to apply but second method is'nt. In this paper, control steam flow is used to solve temperature nonuniformity of power plant boiler.

  • PDF

Magnetic field effects of silicon melt motion in Czochralski crystal puller (초크랄스키 단결정 장치내 실리콘 용융액 운동의 자기장효과)

  • Lee, Jae-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.4
    • /
    • pp.129-134
    • /
    • 2005
  • A numerical analysis was performed on magnetic field effects of silicon melt motion in Czochralski crystal puller. The turbulent modeling was used to simulate the transport phenomena in 18' single crystal growing process. For small crucible angular velocity, the natural convection is dominant. As the crucible angular velocity is increased, the forced convection is increased and the distribution of temperature profiles is broadened. The cusp magnetic field reduces effectively the natural and forced convection near the crucible and the temperature profiles of the silicon fluids is similar in the case of conduction.

An Analysis on the Temperature Distribution at the Circumferential Weld Zone (원통 용접부의 온도분포 해석)

  • NamKoong, Chai-Kwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.221-227
    • /
    • 2009
  • The study of the solidification process of welded metal is carried out using the finite element method, which is the basic study for optimal design. In the analysis of temperature, the welded zone is cooled as the result of heat conduction to the base metal and heat transfer to the circumference. In the early phase of the temperature in base metal zone is little changed. But after the rise in temperature the whole area is cooled gradually and uniformly with the lapse of 10 seconds, and a temperature change is hardly occurred in the radial direction but in the axial direction.

Effect of Sectorial Angle on Natural Convection in Circular Trapezoidal Enclosures (부채형 밀폐 공간 내에서의 자연대류 열전달에 대한 공간각의 영향)

  • Bae, Tae-Yeol;Kwon, Sun-Suk
    • Solar Energy
    • /
    • v.13 no.1
    • /
    • pp.31-38
    • /
    • 1993
  • A numerical study of natural convection heat transfer confined by circular parallel walls at different temperatures and flat adiabatic walls is investigated for Rayleigh numbers from $10^3$ to $10^5$and sectorial angles from $30^{\circ}$ to $180^{\circ}$. It is used by a finite difference method to solve the governing equations. The results show velocity and temperature distributions. Mean Nusselt numbers are shown by $\overline{Nu}=C(Ra_L)^m$.

  • PDF

A Numerical study on current density and temperature distributions of IT-SOFC (IT-SOFC의 전류밀도 및 온도분포에 관한 수치해석 연구)

  • Sohn, Sang-Ho;Lee, Kyu-Jin;Nam, Jin-Hyun;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3067-3072
    • /
    • 2008
  • A two-dimensional model for anode-supported IT-SOFCs is proposed in order to accurately consider the heat and mass transport processes with a fully-developed axial velocity profile in channel flow. A comprehensive micro model is employed to describe the electrochemical reaction in anode and cathode of SOFCs. This paper investigates the effects of operational parameters (inlet temperature, the amount of flow rate, and air flow rate) including flow configurations (co-flow and counter-flow) on the current density and temperature distributions in the IT-SOFCs.

  • PDF

Analysis of Temperature and Stress Distributions of the Roll for the Twin-Roll Continuous Casting Process (트윈롤 연속주조 공정에서의 롤의 온도분포 및 응력해석)

  • 이문도;박현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.400-408
    • /
    • 1992
  • In this paper, analysis of temperature and stress distributions in the roll for a twin roll continuous casting process was carried out. Firstly, several state equations were set up to determine the temperature distribution in the roll using finite difference method. Secondly, thermal stress in the roll was calculated numerically. Also, stress distribution due to the roll pressure was calculated to determine the effect of the roll pressure. For analysis of temperature distributions and the stress states of the roll, there are three kinds of roll materials, 2ICrMoV5. 11, CuCo/NiBe, CuCrZr and three types of cooling system were used.

Analysis of gas pressure and heat distribution in a kW-scale MCFC stack (kW급 MCFC 스택에서의 기체 유동 압력 및 열 분포 해석)

  • 고준호;강병삼;서혜경;임희천
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.213-218
    • /
    • 1999
  • 용융탄산염 연료전지 (MCFC) 스택의 운전시에 가장 문제가 되는 사항들 중의 하나는 전지 반응에 의해 생성되는 많은 열량으로서, 이로 인해 내부 온도가 상승하고 심한 온도 분포가 존재하게 되며 이는 출력 전압 또는 전류의 불균일을 초래하는 동시에 전지 성능 열화(degradation)를 가속시켜 장기 운전에 큰 장애 요인이 된다. 현재 국내에서 개발중인 100kW급 MCFC 발전 시스템의 스택은 전극 면적이 6,000 $ extrm{cm}^2$ 혹은 그 이상에 이르며 25 kW 모듈당 적층되는 전지는 40장으로서 운전시의 발열량 조절이 매우 큰 문제로 등장한다.(중략)

  • PDF

The temperature distributions of the curing space according to blocking the opening of gang-form at the apartment in the cold weather (동절기 공동주택 갱폼 개구부 천막보양에 따른 보양 온도 분포 분석)

  • Cho, Hong-Bum;Song, Jin-Hee;Kim, Young-Sun;Choi, Ji-Su;Lee, Kyu-Nam
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.140-141
    • /
    • 2022
  • CFD analysis was performed to analyze the temperature distribution of the inner space of the curing house according to blocking the opening of the gang-form with a tent in case of concrete pouring and heat curing of the apartment house during the winter season. If the gang-form opening is closed with a tent during internal heating using a hot air blower in the winter, the internal temperature rises compared to the non-reserved due to air-tightness of the curing spaces, and uniform temperature distribution can be ensured. In addition, it is possible to increase curing efficiency by reducing the amount of heat supplied and shortening the heating time.

  • PDF

Prediction of Slag Behavior in an Entrained Flow Coal Gasifier for IGCC (IGCC용 분류층 석탄가스화기 내부에서의 슬래그 거동 예측)

  • Chung, Jaehwa;Chi, Junhwa;Lee, Joongwon;Kim, Simoon;Seo, Seokbin;Park, Hoyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.75.2-75.2
    • /
    • 2011
  • 고온고압에서 운전되는 IGCC용 분류층 석탄가스화기는 석탄에 포함된 회 성분을 대부분 용융 슬래그 형태로 가스화기 벽을 타고 흘러내리게 하여 가스화기 하부로 배출시킨다. 이러한 용융 슬래그를 원활하게 배출시키는 것은 가스화기의 안정적인 운전에 있어서 매우 중요하다. 본 연구에서는 슬래그 층 내의 물질수지, 운동량 및 에너지 보존을 고려하여 석탄가스화기내의 슬래그 거동을 해석할 수 있는 모델 식을 유도하였다. 유도된 슬래그 거동 모델 식들을 적용하고 가스화기의 형상을 고려하여 가스화기 내부에서의 슬래그 거동을 해석하였다. 또한 슬래그 물성치들인 슬래그 점도, 슬래그 비열, 슬래그 밀도, 슬래그 열전달 계수 등을 슬래그의 조성 변화에 따라 별도로 산정하여 슬래그 해석의 입력 데이터로 사용하였다. 슬래그에 첨가되는 석회석의 비율을 해석의 주요 변수로 사용하여 가스화기 하부에서 용융 슬래그 및 고체 슬래그 두께, 용융 슬래그 층 내부에서의 슬래그 점도분포 및 슬래그 속도분포 등 슬래그 거동의 주요 특성들을 예측하였다. 해석결과로 석탄에 석회석의 첨가량을 증가시키면 슬래그의 임계점도온도(temperature of critical viscosity)와 점도가 낮아지므로 가스화기 벽면에서의 용융 슬래그의 유동속도는 빨라지며, 고체 슬래그와 용융 슬래그의 두께가 감소하는 것을 정량적으로 확인할 수 있었다.

  • PDF

Analysis on Po1y(lactic acid) Melt Spinning Dynamics (Poly(lactic acid) 용융방사공정의 동역학 해석)

  • Oh, Tae-Hwan;Kim, Seong-Cheol
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.245-252
    • /
    • 2009
  • Profiles development of melt spinning process of poly(lactic acid) (PLA) was simulated via a numerical method and the radial temperature distribution was calculated using finite difference method. The spinning speed ranged from 1 km/min to 5 km/min was analyzed and the effect of spinning conditions on the radial temperature distribution was investigated. At low spinning speed, the difference between PLA and poly(ethylene terephthalate) (PET) was relatively small. As the spinning speed increased, the difference in velocity profile became prominent. PLA showed a slower spinning speed than PET and solidified more slowly. The temperature difference between the core and surface of the PLA filament reached 4.6 K, which was less than that of PET filament with a difference of 10.4 K. The radial temperature difference increased with increasing the cooling-air velocity and the spinning temperature.