• Title/Summary/Keyword: 옥수수 뿌리

Search Result 68, Processing Time 0.023 seconds

Isolation and Characterization of a N2O-Reducing Rhizobacterium, Pseudomonas sp. M23 from Maize Rhizosphere Soil (옥수수 근권토양으로부터 N2O 환원 근권세균 Pseudomonas sp. M23의 분리 및 특성)

  • Ji-Yoon Kim;Soo Yeon Lee;Kyung-Suk Cho
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.2
    • /
    • pp.203-207
    • /
    • 2023
  • The N2O-reducing rhizobacterium, Pseudomonas sp. M23, was isolated from maize rhizosphere soil. The maximum N2O reduction rate of the strain M23 was 15.6 mmol·g-dry cell weight-1·h-1. Its N2O reduction activity was not inhibited by diesel contaminant, and it was enhanced by the addition of the root exudates of maize and tall fescue. The remediation efficiency of diesel-contaminated soil planted with maize or tall fescue was not inhibited by inoculating with the strain M23. Root weights in the soil inoculated with the strain M23 were greater than those in the non-inoculated soil. These results suggest that Pseudomonas sp. M23 is a promising bacterium to mitigate N2O emissions during the remediation of diesel-contaminated soil.

Allelopathic Influence of Alfalfa and Vetch Extracts and Residues on Soybean and Corn (알팔파와 베치의 추출물 및 잔유물의 콩과 옥수수에 대한 타감작용)

  • Ki-June Kim;III-Min Chung;Kwang-Ho Kim;Joung-Kuk Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.3
    • /
    • pp.295-305
    • /
    • 1994
  • Greenhouse and laboratory studies were conducted to investigate the allelopathic potential of alfalfa and vetch residues on soybean and corn using various extract concentrations (0, 5, 10, 15 and 20%, w/v) and residue rates (0, 0.25, 0.5, 0.75 and 1%, w/w). Aqueous extracts of alfalfa (Medicago sativa L.) and vetch (Vicia spp.) exhibited an allelopathic effect on soybean and corn seed germination, seedling length and weight. The degree of inhibition significantly increased as the aqueous extract concentration increased. Alfalfa and vetch 20% extracts reduced soybean seed germination, seedling length and weight by 35%, 57%, 32% and 15%, 42%, 25% respectively, when compared to control. Corn germination, seedling length and weight was inhibited by 20%, 23%, 38% by alfalfa and 19%, 18%, 35% by 20% vetch extracts. Alfalfa and vetch extracts inhibited secondary root formation and branching as the extract concentration increased. Alfalfa and vetch 20% extracts inhibited by 41% and 32% secondary root numbers, respectively as compared to control. It was found that the aqueous extract of alfalfa resulted in greater reduction in germination, seedling length and weight of soybean than that of vetch. Alfalfa and vetch 1% residue rate inhibited soybean plant height by 30% and 10%, leaf area by 31% and 23%, and dry weight by 18% and 1%, nodule number by 27% and 20% also. Alfalfa and vetch residue significantly enhanced plant height, leaf area and dry weight of corn. The maximum stimulation occurred with 0.25% and 1% of alfalfa and vetch residue rates, respectively. Plant height, leaf area, and dry weight increased by 23%, 59%, 58% and 17%, 52%, 94% with alfalfa and vetch residues of 0.25% and 1%, respectively. This study demonstrates that there is an allelopathic potential resulting from alfalfa and vetch residues on soybean growth and yield. It also suggests that these residues may affect crop growth and development due to the inhibitory or stimulatory effects of allelochemicals existing in the residue.

  • PDF

Effect of Benzyladenine on the IAA-Induced Ethylene Production in the Primary Roots of Maize (옥수수 일차뿌리에서 benzyladenine이 IAA에 의해 유도된 에틸렌 생성에 미치는 영향)

  • Song, Seong-Hee;Park, Ji-Hye;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.745-749
    • /
    • 2010
  • This study was conducted to examine the effect of cytokinin ($N^6$-benzyladenine; BA) and/or an IAA on ethylene production of maize (Zea mays) primary roots. When the two hormones were applied exogenously, both hormones synergistically increased ethylene production, which was greater than the sum of the level of each hormone's effect. For example, the ethylene production was stimulated between about 87% and 170% of the control by $10^{-4}\;M$ BA with $10^{-4}\;M$ IAA for 8 hours respectively, whereas the ethylene production was increased by about 480% of the control when the two hormones were treated simultaneously. Such a synergistic effect was also found in changes in the activity and gene expression level of ACC synthase. However, in the case of ACC oxidase did not show any observable effects. Based on our results, it is possible to conclude that BA and IAA stimulated the ethylene production synergistically by affecting the ACC synthase in maize roots.

Effect of Oryzalin on the Gravitropic Response and Ethylene Production in Maize Roots (옥수수 일차뿌리에서 oryzalin이 굴중성 반응과 에틸렌 생성에 미치는 효과)

  • Kim, Chungsu;Mulkey, Timothy J.;Kim, Jong-Sik;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1223-1229
    • /
    • 2015
  • Oryzalin is a dinitroaniline herbicide, which disrupts the arrangement of microtubules. Microtubules and microfilaments are cytoskeletal components that are thought to play a role in the sedimentation of statoliths and the formation of cell walls. Statoliths regulate the perception of gravity by columella cells in the root tip. To determine the effect of oryzalin on the gravitropic response, ethylene production in primary roots of maize was investigated. Treatment with 10-4 M oryzalin to the root tip inhibited the growth and gravitropic response of the roots. However, the treatment had no effect on the elongation zone of the roots. An application of 10-4 M oryzalin for 15 hr to the root tip caused root tip swelling. The application of 1-aminocycopropane-1-carboxylic acid (ACC), a precursor of ethylene, to the root tip also inhibited the gravitropic response. To understand the role of oryzalin in the regulation of the growth and gravitropic response of roots, ethylene production in the primary roots of maize was measured following treatment with oryzalin. Oryzalin stimulated ethylene production via the activation of ACC oxidase (ACO) and ACC synthase (ACS), and it increased the expression of ACO and ACS genes. Indole-3-acetic acid (IAA) played a key role in the asymmetric elongation rates observed during gravitropism. The results suggest that oryzalin alters the gravitropic response of maize roots through modification of the arrangement of microtubules. This might reduce the distribution of IAA in the upper and lower sides of the elongation zone and increase ethylene production, thereby inhibiting growth and gravitropic responses.

Regulation of Phorbol 12-Myristate 13-Acetate in the Gravitropic Response and Ethylene Production in Primary Roots of Maize (옥수수 뿌리에서 굴중성 반응과 에틸렌 생성에 미치는 Phorbol 12-myristate 13-acetate 조절 작용)

  • Jeong, Yun-Ho;Kim, Jong-Sik;Lee, Kon-Joo;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.87-91
    • /
    • 2012
  • Phorbol 12-myristate 13-acetate (PMA), a known tumor-promoting phorbol ester, activates the signal transduction enzyme protein kinase C (PKC) in animal cells. We investigated the effect of PMA on the regulation of gravitropism via ethylene production in primary roots of maize. PMA stimulated root growth and the gravitropic response in a concentration-dependent manner at $10^{-6}$ M and $10^{-4}$ M over 8 hrs. These effects were prevented by treatment with staurosporine (STA), a potent inhibitor of PKC. These results support the possibility that the gravitropic response might be regulated through protein kinases that are involved in the signal transduction system. Ethylene is known to play a role in the regulation of root growth and gravitropism. Ethylene production was increased by about 26% and 37% of the control rate in response to $10^{-6}$ M and $10^{-4}$ M PMA, respectively. PMA also stimulated the activity of ACC synthase (ACS), which converts the S-adenosyl-L-methionine (AdoMet) to 1-aminocyclopropane-1-carboxylic acid (ACC) in the ethylene production pathway. These effects on ethylene production were also prevented by STA treatment. These results suggest that the root gravitropic response in maize is regulated through protein kinases via ethylene production.

Promotion of Aldehyde Oxidase Activities by Ethanol in Maize (Zea mays) Roots (옥수수 (Zea mays) 뿌리에서 에탄올에 의한 알데히드 산화효소의 활성 증가)

  • Oh, Young-Joo;Park, Woong-June
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1172-1175
    • /
    • 2007
  • We observed that exogenously applied ethanol changed the activities of aldehyde oxidases (AO) in the primary roots of maize (Zea mays). The stimulatory effect of ethanol on the aldehyde oxidase activities was concentration dependent; the AO activities were slightly weaker with 0.2 - 0.4% ethanol and stronger with 0.8 - 1.0% ethanol than the level of control. The promotion of AO activities was not explained by the increased transcription of two AO genes in maize. In contrast, ethanol strongly increased the amount of AO proteins, indicating that ethanol enhanced AO activities by promoting the translation. Among three alcohols including ethanol, methanol and isopropanol, only ethanol promoted AO activities. These results suggested that enhancement of AO activities was specific to ethanol, whose level could be naturally increased when the plant roots drove fermentation to overcome low oxygen stresses.

Effects of Control Methods on Yields of Oriental Melon in Fields Infested with Meloidogyne arenaria (방제방법이 땅콩뿌리혹선충 밀도와 참외 수량에 미치는 영향)

  • 김동근;최동로;이상범
    • Research in Plant Disease
    • /
    • v.7 no.1
    • /
    • pp.42-48
    • /
    • 2001
  • The effect of cultural, physical and chemical control methods on the population density of Meloidogyne arenaria second-stage juveniles (J2) and on fruit yields of oriental melon was investigated at Seongju Fruit Vegetable Experiments Station, Kyungpook province, Korea, for two years from 1999 to 2000. Crops used in a rotation prior to Oriental melon were rice, corn, sesame, and green onion. The physical methods used were either solarization, soil addition or soil drying, and a nematicide, fosthiazate of granular formula, was used as the chemical method, applying at a rate of 300g a. i./10 a. Growing rice in the rotation, solarization, and soil addition controlled the nematode disease most effectively, reducing the number of J2 by 90% and increasing fruit yields two times. However, the effects of these control methods on the J2 population were limited to the early growing season; the J2 population increased later, suggesting that additional control practices may be needed in the following season. The next effective control methods were use of corn in the rotation, the nematicide application, and soil drying. The nematicide application was effective only for the early fruit yield, but neither for the late nor for the total yields. Use of sesame or green onion in the rotation was not effective in controlling the nematode.

  • PDF

Behaviour of the soil residues of the bipyridylium herbicide, [$^{14}C$]paraquat in the micro-ecosystem (Micro-ecosystem중 bipyridylium 제초제 paraquat 토양잔류물의 행적)

  • Kwon, Jeong-Wook;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.1
    • /
    • pp.66-77
    • /
    • 1999
  • In order to elucidate the fate of the residues of the bipyridylium herbicide paraquat in soil, maize plants were grown for 4 weeks on the specially-made pots filled with two different types of soils containing fresh and 6-week-aged residues of [$^{14}C$]paraquat, respectively. The mineralization of [$^{14}C$]paraquat to $^{14}CO_{2}$ during the aging period and the cultivation period of maize plants amounted to $0.13{\sim}0.18%$ and $0.02{\sim}0.17%$, respectively, of the original $^{14}C$ activities. At harvest the roots and shoots contained less than 0.1% and 0.01% of the originally applied $^{14}C$ activities, respectively, whereas the $^{14}C$ activities remaining in soil were more than 97% in both soils. The water extractability of the soil where maize plants were grown for 4 weeks was less than 1.2% of the original $^{14}C$ activities. Most of the non-extractable soil-bound residues of [$^{14}C$]paraquat were incorporated into the humin fraction. Soil pHs during the aging of soil B and after cultivation in all treatments increased. The distribution of the $^{14}C$ activities in subcellular particles of the maize plant roots was the highest in the residue fraction(incompletely homogenized tissue). Dehydrogenase activities increased after vegetation, regardless of soil aging.

  • PDF