• Title/Summary/Keyword: 옥소(玉所)

Search Result 106, Processing Time 0.026 seconds

The Study and Measurement of Three Dimensional Spatial Dose Rate from Radioiodine Therapy (고용량 옥소 치료 시 3차원적 공간선량률 측정 및 연구)

  • Chang, Boseok
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.3
    • /
    • pp.251-257
    • /
    • 2013
  • Spatial dose rates of high dose $^{131}I$ therapy patients were Measured Three dimensional (X, Y, Z) distributions. I have constructed geometrical an aluminum support structure for spatial dose meters placed in 5 different heights, 8 different azimuthal angles, 6 different time interval and distance 100 cm from High dose$^{131}I$ therapy patients. when the height of vertical plane Spatial dose distribution is 100 cm, the Spatial dose rates is max and the error range is low. the vertical plane Spatial dose rates was found to be 71.85 ${\mu}Sv/h$ on the average at a distance of 100 cm, height 100 cm, from the patients 24 hours after $^{131}I$ oral administration. I divided 12 patients into two groups. I have analysed group A (drinking 5 L water) and group B (drinking 3 L water) in order to measure decrease spatial dose rates. I have found the spatial distributions of patient dose rates is $44.9{\pm}7.2$ ${\mu}Sv/h$ in group A and $100.3{\pm}8.1$ ${\mu}Sv/h$ in group B by 24 after $^{131}I$ oral administration. the reduction factor was found to be approximately 54 % through drinking 5 L water during 24 hours.

Transcriptional and Nontranscriptional Regulation of NIS Activity and Radioiodide Transport (NIS 기능의 전사 및 전사외 조절과 방사성옥소 섭취)

  • Jung, Kyung-Ho;Lee, Kyung-Han
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.5
    • /
    • pp.343-349
    • /
    • 2007
  • Radioiodide transport has been extensively and successfully used in the evaluation and management of thyroid disease. The molecular characterization of the sodium/iodide symporter (NIS) and cloning of the NIS gene has led to the recent expansion of the use of radioiodide to cancers of the breast and other nonthyroidal tissues exogenously transduced with the NIS gene. More recently, discoveries regarding the functional analysis and regulatory processes of the NIS molecule are opening up exciting opportunities for new research and applications for NIS and radio iodide. The success of NIS based cancer therapy is dependent on achievement of maximal radioiodide transport sufficient to allow delivery of effective radiation doses. This in turn relies on high transcription rates of the NIS gene. However, newer discoveries indicate that nontranscriptional processes that regulate NIS trafficking to cell membrane are also critical determinants of radioiodide uptake. In this review, molecular mechanisms that underlie regulation of NIS transcription and stimuli that augment membrane trafficking and functional activation of NIS molecules will be discussed. A better understanding of how the expression and cell surface targeting of NIS proteins is controlled will hopefully aid in optimizing NIS gene based cancer treatment as well as NIS based reporter-gene imaging strategies.

Electrochemical Characteristics of Polyoxometalate/Polypyrrole/Carbon Cloth Electrode Synthesized by Electrochemical Deposition Method (전기화학 증착법에 의해 합성된 폴리옥소메탈레이트/폴리피롤/탄소천 전극의 전기화학적 특성)

  • Yoon, Jo Hee;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.421-426
    • /
    • 2016
  • In this report, polyoxometalte (POM)-doped polypyrrole (Ppy) was deposited on surface of three-dimensional carbon cloth (CC) using an electrodeposition method and its pseudocapacitive behavior was investigated using cyclic voltammetry and galvanostatic charge-discharge. The POM-Ppy coating was thin and conformal which can be controlled by electrodeposition time. As-prepared POM-Ppy/CC was characterized using scanning electron microscope and energy-dispersive X-ray spectroscopy. The unique 3D nanocomposite structure of POM-Ppy/CC was capable of delivering excellent charge storage performances: a high areal capacitance ($561mF/cm^2$), a high rate capability (85%), and a good cycling performance (97% retention).