• Title/Summary/Keyword: 옥상 녹화

Search Result 255, Processing Time 0.035 seconds

Analysis of Human Thermal Environment in an Apartment Complex in Late Spring and Summer - Magok-dong, Gangseo-gu, Seoul- (아파트 단지의 늦봄·여름철 인간 열환경 분석 - 서울특별시 강서구 마곡동 -)

  • Park, Sookuk;Hyun, Cheolji;Kang, Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.1
    • /
    • pp.68-77
    • /
    • 2022
  • The human thermal environment in an apartment complex located in Seoul was quantitatively analyzed to devise methods to modify human heat-related stresses in landscape and urban planning. Microclimatic data (air temperature, relative humidity, wind speed, and short- and long-wave radiation) were collected at 6 locations [Apt-center, roof (cement), roof (grass), ground, playground, and a tree-lined road] in the late spring and summer, and the data were used to estimate the human thermal sensation, physiological equivalent temperature (PET) and universal thermal climate index (UTCI). As a result, the playground location had the highest thermal environment, and the roof (grass) location had the lowest. The mean difference between the two locations was 0.8-1.1℃ in air temperature, 1.8-4.0% in relative humidity, and 7.5-8.0℃ in mean radiant temperature. In open space locations, the wind speed was 0.4-0.5 ms-1 higher than others. Also, a wind tunnel effect happened at the Apt-center location during the afternoon. For the human thermal sensation, PET and UTCI, the mean differences between the playground and roof (grass) locations were: 5.2℃ (Max. 11.7℃) in late spring and 5.4℃ (Max. 18.1℃) in summer in PET; and 3.0℃ (Max. 6.1℃) in late spring and 2.6℃ (Max. 9.8℃) in summer in UTCI. The mean differences indicated a level change in PET and 1/2 level in UTCI, and the maximum differences showed greater changes, 2-3 levels in PET, and 1-1.5 levels in UTCI. Moreover, the roof (grass) location gave 4.6℃ PET reduction and a 2.5℃ UTCI reduction in late spring, and a 4.4℃ PET reduction and a 2.0℃ UTCI reduction in the summer when compared with the roof (cement) location, which results in a 2/3 level change in PET and a 1/3 level in UTCI. Green infrastructure locations [roof (grass), ground, and a tree-lined road] were not statistically significant in the reduction of PET and UTCI in thermal environment modifying effects. The implementation of green infrastructure, such as rooftop gardens, grass pavement, and street tree planting, should be adopted in landscape planning and be employed for human thermal environment modification.

The Control of Temperature of Green Roof System with the Roof Slab Insulation Method (옥상슬래브 단열조건에 따른 옥상녹화의 열환경 조정효과)

  • Yeo, In-Ae;Cho, Hong-Je;Yoon, Seong-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.869-872
    • /
    • 2008
  • On this study, the Control of Temperature is specified on the view of indoor comfort and building energy consumption. It is estimated by Dynamic heat load simulation which has the factors of insulation method and the soil thickness of the green roof system. The fact that the model which has no insulation has the greatest effect of dropping high temperature and the cooling load decrease is confirmed.

  • PDF

Quantitative Analysis on the Insulating Effect by the Green Roof Planting System (옥상녹화시스템의 식재방식에 따른 단열효과의 정량적 분석)

  • Jang, Hee-Kyong;Cho, Hong-Je;Yeo, In-Ae;Yoon, Seong-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.873-876
    • /
    • 2008
  • The purpose of this study was to investigate Green Roof System's thermal performance using dynamic heat load simulation programs related to architectural environment. In results, it is found out that the thermal performance of Green Roof System is stabler than that of roof slab system which means that it is possible to create pleasant indoor environment and save the heating and cooling load.

  • PDF

A Study on Correlation between Improvement in Efficiency of PV and Green roof of Public Building (공공건물 옥상녹화와 설치태양광(PV)의 효율향상 상관관계 연구)

  • Lee, Eung Jik
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.111-118
    • /
    • 2013
  • This study aims to investigate advantages of complex installation of green roof and PV system in a public building, to analyze the impact of green roof on the efficiency of PV power generation, and to consider the correlation between green roof and PV power generation. When the temperature and power generation of the modules installed in the green roof and non-green roof of the public building were measured for 3 days, the average temperature of the green roof was 23.6 degrees, and it was 36.1 degrees in the non-green roof which increased by nearly 53%. Overall, the module temperature in the green roof was lower. On the other hand, in relation to the PV generation depending on temperature reduction during the same period, the mono-crystalline module and the poly-crystalline module in the green roof showed an increase in generation at nearly 222.2W and 341.6W, and the efficiency rose by 5.5% and 6.2%, respectively, compared to the modules in the non-green roof. Therefore, it is analyzed that green roof has a positive influence on PV power generation. Finally shows the efficiency of the installed on the Green Roof PV system (complex Installation) higher than on the concrete roof PV system. Thus, the complex PV systems as well as the usual benefits of green roofs will provide greater synergies.

Current Status of Applications of Extensive Greening Technology (경량형 옥상 녹화 유형 정의와 적용 현황)

  • Kim, Hyeon Soo
    • KIEAE Journal
    • /
    • v.12 no.5
    • /
    • pp.85-92
    • /
    • 2012
  • This research was executed to analyze the problems of Korean type of 'Light-weight' Greening that has been applied similarly by the type of 'Intensive Greening,' and to suggest the better way. To achieve this purpose, we compared and analyzed the theory about the definition of Korean type of Roof Greening and the type of Greening of FLL. And we researched documents and fields of 18 sites of Seoul City that applied the type of 'Light-weigh' Greening, and produced improvement issues and directions. To resolve the confusion of the type definition and site application, arising from considering 'weight of greening' as the main viewpoint to classify the type of Greening, we have to change the term 'Light-weight' with more suitable for contents-based definitions. According to a 'Light-weight' Greening field survey, only 5 among 18 sites are suitable for Extensive Greening and the rest sites show the character of Intensive Greening. Korean concept of 'Light-weight' Greening corresponds with the definition of 'Weight of Greening', but has a problem that does not correspond with the viewpoint of 'Maintenance of Greening'. This problem comes from the fact that the surveyed Light-weight(extensive) Greening sites are designed and executed for use. Therefore, Extensive Greening is proper to be applied for sites, excluded from use. 5 sites, determined suitable for Extensive Greening, adopts 'Sedum-herbaceous Planting' or 'Sedum-grasses Planting' forms of Greening, based on Sedum. So, it has to precede with selecting and breeding plants for developing various forms of Greening, suitable for Extensive Greening including 'Grasses-herbaceous Planting.'

Development and Evaluation of Artificial Lightweight Soil Using Bottom Ash (바텀애시를 활용한 인공경량토양의 개발 및 성능 평가)

  • Kim, Chul-Min;Kim, Min-Woo;Cho, Gun-Young;Choi, Na-Rae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.252-258
    • /
    • 2018
  • A larger energy consumption and concentration of population induced green house gas glowing and heat island effect in the urban space. Roof green system was a effect method to reduce green house gas and heat concentration in the city. Therefore, construction of this system was increasing. Most of lightweight soil used in roof green system was perlite, but this caused dust and skin disease. So it needed to develop another new lightweight soli for roof green system. Meanwhile, a thermoelectric power plant generated bottom ash as a by-product. According to previous research, bottom ash could be used for artificial lightweight soil with 60 wt% of mixing rate. But this study was proceed to develop a artificial lightweight soil using bottom ash with higher mixing rate by 65 wt% and different organic ingredients. First, physical and chemical properties of bottom ash was investigated. Then test according to landscaping design standard was proceeded for various artificial lightweight soil mix types using bottom ash, bark, compost and coco peat. As a result, the artificial lightweight soil with 65% of bottom ash, 30% of bark and 5% of compost was suitable for low and middle range of soil standard.

Basic Study on Development of Easily Available Rooftop Greening System for Private Residences - Focus on the Theoretical Investigation and Greening Methods - (개인주택용 보급형 옥상녹화 시스템 개발을 위한 기초 연구 - 이론적 고찰 및 녹화 공법을 중심으로 -)

  • Kwak, Cheol-Soon;Lee, Suk-Gun;Lee, Hyun-Woo;Lee, Jong-Won
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.170-174
    • /
    • 2005
  • The waste land can be changed to the land that creature can survive by the greening. The studies on the rooftop greening have increased rapidly in number since these studies have made a positive effect on the improvement of the urban ecosystem and the lacking greens environment of the city. However, the majority of research are for rooftop greening system of the public and commercial building. Therefore, the development of easily available rooftop greening system for private residences is required.

  • PDF

Effect of Thermal Environment by Green Roof and Land Cover Change in Detached Housing Area (옥상녹화 및 토양피복 변화가 단독주택지 외부 열환경에 미치는 영향 분석)

  • Kim, Jeong-Ho;Yoon, Yong-Han
    • Journal of Environmental Policy
    • /
    • v.10 no.1
    • /
    • pp.27-47
    • /
    • 2011
  • Used as foundation resources for environment improvement and preservation of single-housing residential area by practicing classification of biotope with the concept of ecological area rate applied and performing urban thermal environment prediction simulation. Biotope is classified as seven types according to classification of biotope which is carried out with the concept of ecological area rate applied. The classification is listed below in descending order: building biotope(48.16%), impervious pavement biotope(39.75%), greenspace biotope(6.23%), crack permeable pavement biotope(3.26%), whole surface permeable pavement biotope(2.51%), parts permeable pavement biotope(0.04%). As a result of analysing prediction of variation and characteristics of thermal environment of single-housing residential area, land surface temperature per types of biotope are evaluated as listed below in descending temperature order: impervious pavement biotope > building biotope > greenspace biotope > permeable pavement biotope. In case 2 where vegetated roof hypothetically covers 100% of the roof area, temperature is predicted to be $33.58^{\circ}C$ Max, $23.85^{\circ}C$ Min, and $27.74^{\circ}C$ Avg. which is Approximately $5.19^{\circ}C$ lower than a non-vegetated roof. Average outdoor temperature for case 2 is studied to be $0.18^{\circ}C$ lower than case 1.

  • PDF

Covering Types and Covering Ratio Changes of Planted Species on an Extensive Green Roof (관리조방형 옥상녹화 식재식물의 피복률 변화 및 피복유형)

  • Jang, Ha-Kyung;Lee, Eun-Heui
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.3
    • /
    • pp.404-411
    • /
    • 2011
  • The purpose of this study was to analyze the characteristics of plant covering in the extensive green roof site. Eighteen herbaceous perennial grass such as Caryopteris incara and sedum species such as Sedum Kamtschaticum were planted on an experimental green roof with 10cm substrate depth in 2007. This study investigated vegetation change over 3 growing seasons 2007-2009. The covering rates of planted species mostly increased in 2008, but declined in 2009 except 6 species such as sedum specis and Thymus quinquecostatus var. japonica etc. There were four categories of covering characteristics generated from the results of this study. These include the type of sustain planting site, the type of encroach adjacent site, the type of creeps and spreads, and the type of scatters and spreads. The covering models of eight planted species were drawn by simple regression analysis. However more monitoring of various plants will be needed to establish the information for sustainable roof planting plan.

Determination of Optimal LID Location Considering Runoff and Pollutant Load (우수유출량 및 오염부하량을 고려한 LID 최적위치 결정)

  • Jun, Sang Hoon;Lee, Eui Hoon;Kwon, Soon Ho;Jo, Deok Jun;Kim, Joong Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.480-480
    • /
    • 2017
  • 급격한 도시화 및 산업화는 주차장, 건물 및 도로 등 유역의 불투수 면적을 증가시켜 강우에 의한 침수피해 및 비점오염원에 따른 하천의 수질오염을 유발하고 있다. 최근 국내에서는 이러한 문제점을 개선하기 위해 유출저감 시설인 저영향개발 (Low Impact Development, LID)을 도입하여 연구를 진행하고 있다. LID 기술은 우수의 침투 및 저류를 통해 도시화에 따른 영향을 최소화하여 개발 이전의 토지 상태에 최대한 가깝게 만들기 위한 도시개발 기법이다. 대표적인 LID 요소기술로는 옥상녹화, 투수성포장 및 생태저류장치 등이 있으며 도로변, 건물주변, 건물옥상 등에 설치되어 강우유출량과 비점오염물질의 오염부하량을 저감시키는 역할을 한다. 본 연구에서는 안양천에 위치한 가산 1 빗물펌프장 유역에 LID 기법을 적용하였으며, LID 요소기술은 옥상녹화 및 투수성포장으로 선정하였다. LID의 설치위치를 변경하여 적용시키면서 유출지점에서의 우수유출량 및 오염부하량을 산정하고 이를 최대로 저감시킬 수 있는 최적위치를 결정하였다. 최적위치에 LID를 설치하였을 때 우수유출량은 옥상녹화의 경우 약 2.20 %, 투수성포장의 경우 약 2.28 %의 저감효과를 나타내었다. 또한, 오염부하량은 두 가지 경우에서 약 4.74 %의 저감효과를 나타내었다. 최적위치를 결정하는 과정에서 우수유출량과 오염부하량의 저감효과가 서로 독립적으로 거동한다는 것을 확인할 수 있었다. 추후 연구에서는 LID 요소기술을 복합적으로 설치한 경우의 저감효과에 대한 분석이 필요할 것으로 판단된다.

  • PDF