• Title/Summary/Keyword: 옥상층

Search Result 46, Processing Time 0.032 seconds

The Effect of Green Roof Load on the Structural Design of Roof Slab of LH Housing and Service Facilities (옥상녹화하중이 LH 공동주택 및 부대복리시설의 옥상층 슬래브 설계에 미치는 영향)

  • Lee, Bum-Sik;Kwon, Hyuck-Sam;Kim, Jung-Gon;Kim, Ji-Hyeon
    • Land and Housing Review
    • /
    • v.7 no.1
    • /
    • pp.53-63
    • /
    • 2016
  • This paper contains structural analysis and design regarding how three types of green roof load affect roof slab design of LH housing and facilities. Based on the Structural analysis, an appropriate Roof slab rebar guideline and roof slab thickness have been set up for the green roof load which takes effect on structural design of roof slab. Result of structural analysis and design has been made as follows. Roof slabs can arrange the slab rebar(D10) within the 200~250mm disregarding the types of the green roof load and the pattern of green roof load; also, slab thickness can be designed within 150mm. Moreover, even if the concrete design strength of roof slab changes to 24, 27, and 30MPa, D10 rebar can still be arranged within 200~250mm, and 150mm for slab thickness. Two-way slab of commercial building was appeared to be arranged by slab rebar(D10) within 200mm and 150mm for slab thickness disregarding the soil type or the soil thickness of green roof.

An Experimental Study of Green Roofs on Indoor Temperature Reduction (옥상녹화의 건물 내 온도 저감 효과에 대한 실험적 연구)

  • Kang, Da Won;Choi, Hui Dong;Seo, Yong Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.157-157
    • /
    • 2021
  • 2015년 파리에서 체결된 파리협정은 1850년 대비 2100년까지의 지구 평균기온 상승을 1.5℃ 이내로 제한하기 위해 5년마다 참여국에 상향된 온실가스 배출 감축 목표를 제출하게 하고, 탄소 배출 및 온도상승 저감 목표 달성을 위해 도시 내 그린인프라를 적극적으로 도입하는 등 국제사회 공동의 종합적인 이행을 예정하고 있다. 그린인프라의 유형 중 하나인 옥상녹화(Green Roof)는 기후변화 적응을 위한 도시 인프라 구축 방법의 하나로 국내에서도 많은 각광을 받고 있다. 옥상녹화(Green Roof)는 도시의 불투수층인 지붕 면적을 모두 혹은 일부 식생으로 덮어 표면층에 추가의 투수층을 조성하는 것을 지칭한다. 옥상녹화의 경우 별도의 토지면적 확보가 필요하지 않고 기존의 시설물에 추가적인 설치가 가능해 여분의 토지가 부족한 도심지의 녹지 확보를 위한 친환경적인 그린인프라로 각광받고 있다. 현재까지 옥상녹화(Green Roof) 관련 국내 연구 현황은 '옥상 녹화의 공법'을 다룬 비율이 높고 실증적인 결과를 가진 선행연구가 거의 없다. 따라서 본 연구는 동일한 조건하에 4개의 실험동을 설치하고 동질성 검사를 한 후 옥상에 설치된 재료[일반 콘크리트(Bare Concrete), 고반사 도장(High Reflective Paint), 사사(Short Bamboo), 잔디(Grass)]에 따른 건물 내 온도 변화 저감효과에 대한 분석을 수행하였다. 2020년 8월 17일부터 22일까지 측정된 지붕 표면 평균 최고온도 모니터링 결과를 일반 콘크리트 지붕과 비교했을 때. 고반사 도장 지붕의 경우 8.26℃, 옥상녹화(사사, short bamboo) 지붕의 경우 7.21℃, 옥상녹화(잔디, grass)의 경우 10.8℃ 낮은 것으로 측정되었다. 또한 실내 천정 표면 평균 온도의 경우 콘크리트 지붕과 비교하여 고반사 도장 지붕은 6.46℃, 옥상녹화(사사, short bamboo) 지붕은 13.52℃, 옥상녹화(잔디, grass)는 13.3℃ 낮은 것으로 나타났다. 본 연구결과는 옥상녹화의 온도저감 효과를 정량적으로 제시하고 있어, 향후 기후변화 대응 및 적응 전략적 수립에 기여할 수 있을 것으로 판단된다.

  • PDF

The Variation of Top Floor Indoor Thermal Environment with Roof Storage Using Model Experiment (옥상 저류조 설치에 따른 최상층 실내열환경 변화에 관한 모형 실험연구)

  • Park, Bong-Gil;Lee, Kyung-Hee;Jang, Seung-Jae
    • Journal of the Korean housing association
    • /
    • v.20 no.3
    • /
    • pp.105-112
    • /
    • 2009
  • The purpose of this study is to investigate a top floor, indoor, thermal environment by comparison between the indoor air temperature and the rooftop surface temperature, and between the indoor air temperature and the outdoor air temperature using an experimental model. The model experiment was conducted with 4 cases,: no-rainfall, 1 em-height, 10 em-height and 20em-height of rainfall on the rooftop. According to the results of the height of stored rainfall, the average air temperature difference between the indoor and outdoor air with 1, 10 and 20 em-height of rainfall on the rooftop was $4.0^{\circ}C$, rooftop $1.2^{\circ}C$ and rooftop $1.0^{\circ}C$, respectively. The upper 10 em-height of rainfall on the rooftop acted to decrease the indoor air temperature on the top floor.

Test and Field Application Analysis for Root Barrier using Aluminum Film Adhered to PVC and Waterproofing using E.P Sheet with Asphalt Membrane for Green Roof System (PVC 및 알루미늄을 진공 접착한 방근시트와 E.P시트 및 도막방수층을 부분 절연한 방수/방근 복합공법의 옥상녹화 적용성 평가에 관한 실험적 연구)

  • Oh, Sang-Keun;Kwon, Si-Won;Park, Jin-Sang;Park, Sang-Chan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.71-74
    • /
    • 2006
  • The introduction of materials and methods of construction which are appropriated to property of green roofs could be a decisive factor in a long-range durability and economical maintenance cost, moreover, it support to variety construction system and organization. In this paper I focused to assure the basic system for waterproofing materials and root barrier apply to green roof as searching the application of field condition. And I suggest proper waterproofing and root barrier as considering the mutual connection and plant growth. and it can be a standard model to adopt to domestic green roof system.

  • PDF

A Case Study on the Design Variables Evaluation of Green Roof System effecting on Building Energy Conservation (건물 에너지 소비량에 영향을 미치는 옥상녹화시스템 설계변수 평가에 관한 사례 연구)

  • Choi, Jeong-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.41-48
    • /
    • 2015
  • This study is to find out the major design variables of Green roof system effecting on the building energy consumption. Therefore, in three categories of green roof system, namely, foliage layer, soil layer and irrigation, 10 design variables are selected and simulated with one-story case building. Simulation is carried out with Design Builder and EnergyPlus. Finally, it was found out the effects of major variables affecting on the building heating and cooling energy and how they are affecting on the heating and cooling seasons respectively.

Analyzing Leakage Defect Types in Educational Facilities and Deriving Key Management Strategies Using the FTA Method (FTA기법을 이용한 교육시설 누수 하자 유형 분석 및 주요 원인 관리방안 )

  • Jung, Daegyo;Park, Hyunjung;Lee, Dongyeop;Kim, Daeyoung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.42-49
    • /
    • 2024
  • In recent years, the construction industry has diligently focused on improving the quality and safety of buildings through smart technologies. However, there is a growing trend of leakage defects, especially in educational facilities, due to aging. The objective of this study is to analyze the causes of these defects in educational environments using the Fault Tree Analysis (FTA) technique and propose preventive measures based on the findings. The FTA technique is explained through a review of domestic literature, and data from the Educational Support Center from 2019 to 2021 are examined to identify major defects. The construction of the Fault Tree (FT) for leakage defects resulted in the identification of 12 basic events. Subsequently, a comprehensive understanding of the causes of leakage is achieved through FTA analysis, leading to the identification of the primary causes of defects. Leakage defects accounted for 46.8% of all reported issues in educational facilities, with roof (ceiling) leaks being the most common problem. FTA analysis revealed that poor substrate treatment was the main cause of roof (ceiling) leaks, which could be attributed to cracks in the waterproof layer, joint cracks, and microvoids in the waterproof layer. The primary achievement of this research is to provide essential data for preventing leakage defects in educational facilities and developing preventive measures through the FTA technique. These results are expected to significantly enhance the management of educational facilities and the prevention of leakage issues.

Assessment of Plant Growth and Soil Properties of Extensive Green Roof System for Rhododendron indicum Sweet (영산홍을 이용한 저관리 옥상녹화 시스템의 식물생육 및 토양특성 평가)

  • Kim, In-Hea;Huh, Keun-Young;Shin, Hyeon-Cheol;Park, Nam-Chang
    • Horticultural Science & Technology
    • /
    • v.28 no.6
    • /
    • pp.1057-1065
    • /
    • 2010
  • Recent urban concerns over environmental problems have furthered interest in green roof system. Plant growth and load bearing capacity of an underlying roof are key factors to determine an optimal system. This study was carried out to develop an optimal extensive green roof system for shrubs assessing the effects of substrate type and soil depth on the growth of $Rhododendron$ $indicum$ Sweet. in the experimental systems with different soil types and depths from 2001 to 2008. Substrate types of perlite alone and blended with sandy loam (v/v, 1:1) were used on the experimental systems with depths of 30 cm, 45 cm, and 60 cm. The survival rate of the plants on the perlite alone + 45 cm soil depth system (RS-A-45) was 100% during the experimental period, while those on the perlite alone + 30 cm soil depth system (RS-A-30) and perlite blended + 60 cm soil depth system (RS-B-60) showed 33% and 67%, respectively, in 2008. The overall plant growth and soil properties of RS-A-45 were superior to the others. At 8 years after installation, the total weight of RS-A-45 including plant fresh weight was about $376.6kg{\cdot}m^{-2}$ in field capacity indicating RS-A-45 can be optimal extensive and light weight green roof system.

Thermal Property of the Roof Green Unit System Using Artificial Lightweight Soil Recycled with Bottom Ash (바텀애시 재활용 인공토양 적용 옥상녹화 유니트 시스템의 열특성)

  • Yoo, Jong-Su;Lee, Jong-Chan;Oh, Chang-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • In this study, the surface temperature of the roof green system using ALSRBA(Artificial Lightweight Soil Recycled with Bottom Ash) was measured in each season and the thermal property of the ALSRBA was investigated. As a result, it was certified that ALSBRA has superior thermal property than the usual artificial soil. In addition, The daily temperature range in each season was measured to investigate the thermal isolation property of EUS(Existing Unit System) and DUS(Developed Unit System). The result showed that the thermal isolation effect of EUS was lower than that of SPSS(Site-Place-Soil System), but thermal isolation effect of DUS was similar to that of SPSS because DUS has continuous ALSBRA layer by removing unit barrier.

A study on the choice of the best method of construction for building insulation and waterproof (건축물의 단열방수의 최적 공법및 구법 선정 방법론에 관한 연구)

  • Lee, Sung-Goo;Park, Tae-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.654-658
    • /
    • 2006
  • To solve some problems that reveals in the exiting stickiness problem of the housetop, the housetop finishing impact layer can be displaced by the existing concrete block. By doing in this way, this need is rising that the excess cost should be reduced and the materials should be recycled in repairing. According to the above, this study is going to suggest the basic data on building and using of the dry process method by estimating and analyzing a overall determinate quantity through the experiment on the insulation performance among the capacity items on the outside insulation waterproof dry process suggested. In addition, choosing the building method according to the use, the peculiar property and the importance of the building can be possible by analyzing the defect causes happening in the rooftop insulation and waterproof, suggesting the better method and classifying the most proper choosing methods for the need of the building according to the importance of the main factors.

  • PDF