KIPS Transactions on Computer and Communication Systems
/
v.11
no.3
/
pp.73-82
/
2022
Auto-scaling is one of the most important functions for cloud computing technology. Even if the number of users or service requests is explosively increased or decreased, system resources and service instances can be appropriately expanded or reduced to provide services suitable for the situation and it can improves stability and cost-effectiveness. However, since the policy is performed based on a single metric data at the time of monitoring a specific system resource, there is a problem that the service is already affected or the service instance that is actually needed cannot be managed in detail. To solve this problem, in this paper, we propose a method to predict system resource and service response time using a multivariate time series analysis model and establish an auto-scaling policy based on this. To verify this, implement it as a custom scheduler in the Kubernetes environment and compare it with the Kubernetes default auto-scaling method through experiments. The proposed method utilizes predictive data based on the impact between system resources and response time to preemptively execute auto-scaling for expected situations, thereby securing system stability and providing as much as necessary within the scope of not degrading service quality. It shows results that allow you to manage instances in detail.
Detection of abnormal signal generally can be done by using features of normal signals as main information because of data imbalance. This paper propose an efficient method for abnormal signal detection using parallel AutoEncoder (AE) which can use features of abnormal signals as well. The proposed Parallel AE (PAE) is composed of a normal and an abnormal reconstructors having identical AE structure and train features of normal and abnormal signals, respectively. The PAE can effectively solve the imbalanced data problem by sequentially training normal and abnormal data. For further detection performance improvement, additional binary classifier can be added to the PAE. Through experiments using public acoustic data, we obtain that the proposed PAE shows Area Under Curve (AUC) improvement of minimum 22 % at the expenses of training time increased by 1.31 ~ 1.61 times to the single AE. Furthermore, the PAE shows 93 % AUC improvement in detecting abnormal underwater acoustic signal when pre-trained PAE is transferred to train open underwater acoustic data.
Passive sonar signals mainly contain both normal and abnormal signals. The abnormal signals mixed with normal signals are primarily detected using an AutoEncoder (AE) that learns only normal signals. However, existing AEs may perform inaccurate detection by reconstructing distorted normal signals from mixed signal. To address these limitations, we propose an abnormal signal detection model based on a Recurrent Neural Network (RNN) and vector quantization. The proposed model generates a codebook representing the learned latent vectors and detects abnormal signals more accurately through the proposed search process of code vectors. In experiments using publicly available underwater acoustic data, the AE and Variational AutoEncoder (VAE) using the proposed method showed at least a 2.4 % improvement in the detection performance and at least a 9.2 % improvement in the extraction performance for abnormal signals than the existing models.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.10a
/
pp.267-273
/
1998
셀룰라 오토마타 신경망은 저자에 의하여 개발된 신경망으로써 주변의 셀과 국소적인 연결을 가지며 셀룰라 오토마타의 발생규칙에 따라 생성되는 신경망이다. 셀룰라 오토마타 신경망을 간단히 줄여서 ECANS라고 한다. 본 신경망은 카오스 뉴런 모델을 사용하며 뉴런사이의 연결강도는 흥분성 또는 억제성 결합을 갖는다. 신호의 전달방식은 펄스의 형태로서 뉴런이 발화하면 '1' 발화하지 않으면 '0'이 된다. 본 논문에서는 셀룰라 오토마타를 구성하는 요소별 특징을 살펴보고 주어진 문제에 적합한 셀룰라 오토마타 신경망을 얻어내기 위한 진화방법으로서 DNA 코딩방법을 제안한다. 제안한 방법의 유효성을 시뮬레이션을 통하여 검증한다.
센서 네트워크의 센서 개수가 늘어나고 데이터 수집 주기가 짧아지며 데이터의 용량도 늘어남에 따라 데이터를 수집하는 중앙서버의 과부하가 걸리는 현상이 발생할 수 있다. 본 논문에서 제안하는 시스템은 센서 데이터를 수집하는 모듈을 컨테이너화 하여 쿠버네티스로 관리한다. 또한 쿠버네티스의 오토 스케일링 기능을 이용하여 데이터 수집 모듈의 과부하가 발생할 경우 자동으로 수집 모듈을 복사하여 scale out 할 수 있다.
Proceedings of the Korean Society of Precision Engineering Conference
/
1997.04a
/
pp.660-664
/
1997
본 논문은 사출금형 설계를 위한 전문가 시스템의 개발에 관한 연구이다. 설계자가 오토케드 (AutoCAD)환경에서 금형부품 및 몰드베이스를 3차원 형상으로 나타낼 수 있으며 필요한 설계 데이터를 추가할수 있는 프로그램 개발에 있다. 주 프로그램은 C++를 사용하여 구축하였으며,금형부품 치수 및 몰 드베이스를 데이터베이스화 하였다. 주 프로그램과 오토캐드와 인터페이스를 하여 오토캐드 환경에서 자 유롭게 사용할 수 있도록 하였다. Pull-down menu와 Dialog box를 이용하여 금형 설계자가 금형의 각 부 품을 자유롭게 선정할 수 있으며, 각 단계별 선정된 금형부품은 즉시 나타나 설계자가 바로 확인 할 수 있도록 하였다. 이젝터 핀의 위치 및 크기를 자동적으로 나타낼수 있으며, 선정된 금형 부품 및 몰드베이 스는 2차원이나 3차원으로 나타낼 수 있다. 각각의 3차원 부품을 독립적으로 나타낼 수 있어 NC프로그램과 인터페이스가 가능토록 하였다.
A Cellular Automaton(CA) is a dynamical system in which space and time are discrete, the state of each cell is unite and is updated by local interaction. Since the characteristics of CA is diffusion and local interaction, CA is used by crypto-systems and VLSI structure. In this study, we proposed a hash function based on the concept of 2-dimensional cellular automata and analyzed the proposed hash function.
Kim, Phyoung-Jung;Hong, Sung-woong;Cho, Yung-jin;Jung, Chan-kyo
Annual Conference of KIPS
/
2016.10a
/
pp.843-844
/
2016
시장으로부터 요구는 야간에도 고화질 영상을 획득하기 위한 기술개발이 필요하다. 우리는 방범용 야간 고화질 영상 확보를 위한 시스템과 감성적인 실내외 조명 관리 시스템을 위한 IADP(IoT Auto Dimming Platform)를 설계한다. 공원이나 학교 등 외부 환경에 따른 LED 오토 디밍 제어 및 접근감지에 따른 밝기 제어, 가정에서 거실등, 침실등, 공부방 등의 환경을 고려한 밝기 제어를 통한 시력 보호 및 감정 제어, 및 테마 프로그램에 의한 주기적 LED 경관 제어를 제공하도록 외부환경에 따른 테마형 IoT 오토디밍 플랫폼 IADP를 설계한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.03a
/
pp.57-60
/
1998
Darwin Machine은 자기 자신의 구조를 전자적인 속도로 진화해 나가는 하드웨어로서 복잡한 구조와 성질으 진화 기법을 사용하여 만들어 나가는 진화공학(Evolutionary Engineering)의 한 예이다. 하드웨어가 전자적인 속도로 진화하기 위해서는 각각으리 하드웨어 구성요소들이 병렬적으로 작동해햐 하는데 셀룰라 오토마타는 이러한 문제를 해결하는 적합한 구조이며, 하드췌어에 쉽게 이식할 수 있는 장점이 있다. 신경망의 학습 능력과 진한 연산을 이용하면 효율적인 진화를 유도할 수 있다. 본 논문에서는 이러한 하드웨어 구현을 위한 셀룰라 오토마타에 기반한 신경망을 보이고자 한다.
본 연구는 Ramadege 와 Wonham 의 Supervisor Control 을 기반으로 한다. 초기 이 이론은 오토마타를 이용하여 모델링 하였으며, 많은 연구가 활발하게 이루어져왔다. 그러나, 유한 오토마타는 병렬처리 및 동기화, 자원공유를 모델링하기 어렵다는 단점이 있다. 유한 오토마타를 기반으로 한 연구는 일반적으로 복잡한 시스템을 모델링 할 때 발생하는 결합 폭발성에 의한 제한성이 있다. 반면, 패트리 넷은 병렬처리나 동기화에 대한 모델링을 하기에 보다 더 강력한 도구이지만, 패트리 넷을 이용한 통합법은 아직까지 광범위하게 연구되지는 않았다. 따라서, 본 연구에서는 공장설비(plant)모델과 이 설비에 대해 사용자가 원하는 작업을 명시한 사용자 설계명세 (user specifications)모델을 패트리 넷을 이용하여 모델링하는 방법을 제안한다. 본 연구는 사용자 설계명세에 관련한 폐쇄 회로 패트리 넷(closed-loop PN)을 획득하고자 원시 공장설비 모델에 제어 플래이스(control place)를 추가하는 통합을 실행하기 위한 방법으로 Ghaffari의 영역 이론(Theory of Region )을 이용하여 연구개발 하였다
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.