• 제목/요약/키워드: 오토리습

검색결과 3건 처리시간 0.015초

알루미늄 합금 형재의 열간압출 금형설계 (A Design of Dies for Hot Extrusion of Structural Shapes from Aluminum Alloys)

  • 조해용;김관우;최재찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.531-534
    • /
    • 1997
  • A design system of dies for hot extrusion of structural shapes such as Z' s, L' s, T' s, U' s and H' s from aluminum alloys was developed in this study. The developed design system of dies is based of established die design rule system. The design rules for die design are obtained from the handbooks, plasticity theories and relevant references. The environment of the system is AutoCAD and AutoLISP, the graphic programming language was used for the configuration of the system. This system includes five major modules such as section shape design module, die opening number module. die opening layout module, die correction module and die bearing design module that are used to determine design variables. This system would be used to design of dies for hot extrusion from aluminum alloys and widely used in manufacturing course..

  • PDF

알루미늄 합금 형재의 열간압출 금형설계 시스템 (A Design System of Dies for Hot Extrusion of Structural Shapes from Aluminum Alloys)

  • 조해용;김관우;최재찬
    • 한국정밀공학회지
    • /
    • 제19권3호
    • /
    • pp.131-136
    • /
    • 2002
  • A design system of dies for hot extrusion of structural shapes such as Z's, L's, T's, U's and H's from aluminium alloys was developed in this study. The developed design system of dies is based of estimated die design rule system. The design rules for die design are obtained from the handbooks, plasticity theories and relevant references. The environment of the system is AutoCAD and AutoLISP, the graphic programming language was used for the configuration of the system. This system includes five major modules such as section shape design module, die opening number module, die opening layout module, die correction module and die bearing design module that are used to determine design variables. This system would be used to design of dies for hot extrusion from aluminum alloys and widely used in manufacturing course.

드로우 금형의 에어 포켓 형상 및 체적예측 자동화 시스템 개발 (Development of an Automated System for Predicting Shape and Volume of Air Pocket on the Draw Die)

  • 정성윤;황세준;박원규;김철
    • 한국정밀공학회지
    • /
    • 제25권1호
    • /
    • pp.72-78
    • /
    • 2008
  • Metal stamping is widely used in the mass-production process of the automobile. During the stamping process, air may be trapped between the draw die and the panel and/or between the punch and the panel. Air pocket rapidly not only increases forming load in the final stage, but also deforms the product just formed by compressive air inside the air pocket in knockout process. To prevent these problems air bent holes are drilled in the die to exhaust the trapped air but all processes associated with air bent holes are performed by empirical know-how of workers in the field due to lack of researches. Therefore this study developed an automated design system for predicting the shape and position, and volume of air pocket on the draw die by using the AutoLISP language under AutoCAD circumstance. The system is able to display the shape of air pocket occurred in the draw die and to calculate automatically its volume by strokes. So it makes a stepping stone to calculate theoretical size of an air bent hole and numbers according to it by predicting and analyzing the position and volume of air pocket. Results obtained from the system enable the designers or manufacturers of the stamping die to be more efficient in this field.