• Title/Summary/Keyword: 오차모수

Search Result 211, Processing Time 0.02 seconds

Relationship between Interstate Highway Accidents and Heterogeneous Geometrics by Random Parameter Negative Binomial Model - A case of Interstate Highway in Washington State, USA (확률적 모수를 고려한 음이항모형에 의한 교통사고와 기하구조와의 관계 - 미국 워싱턴 주(州) 고속도로를 중심으로)

  • Park, Minho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2437-2445
    • /
    • 2013
  • The objective of this study is finding the relationship between interstate highway accident frequencies and geometrics using Random Parameter Negative Binomial model. Even though it is impossible to take account of the same design criteria to the all segments or corridors on the road in reality, previous research estimated the fixed value of coefficients without considering each segment's characteristic. The drawback of the traditional negative binomial is not to explain the integrated variations in terms of time and the distinct characters specific segment has. This results in under-estimation of the standard error which inflates the t-value and finally, affects the modeling estimation. Therefore, this study tries to find the relationship of accident frequencies with the heterogeneous geometrics using 9-years and 7-interstate highway data in Washington State area. 16-types of geometrics are used to derive the model which is compared with the traditional negative binomial Model to understand which Model is more suitable. In addition, by calculating marginal effect and elasticity, heterogeneous variables' effect to the accidents are estimated. Hopefully, this study will help to estiblish the future policy of geometrics.

Robust ridge regression for nonlinear mixed effects models with applications to quantitative high throughput screening assay data (비선형 혼합효과모형에서의 로버스트 능형회귀 방법과 정량적 고속 대량 스크리닝 자료에의 응용)

  • Yoo, Jiseon;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.1
    • /
    • pp.123-137
    • /
    • 2018
  • A nonlinear mixed effects model is mainly used to analyze repeated measurement data in various fields. A nonlinear mixed effects model consists of two stages: the first-stage individual-level model considers intra-individual variation and the second-stage population model considers inter-individual variation. The individual-level model, which is the first stage of the nonlinear mixed effects model, estimates the parameters of the nonlinear regression model. It is the same as the general nonlinear regression model, and usually estimates parameters using the least squares estimation method. However, the least squares estimation method may have a problem that the estimated value of the parameters and standard errors become extremely large if the assumed nonlinear function is not explicitly revealed by the data. In this paper, a new estimation method is proposed to solve this problem by introducing the ridge regression method recently proposed in the nonlinear regression model into the first-stage individual-level model of the nonlinear mixed effects model. The performance of the proposed estimator is compared with the performance with the standard estimator through a simulation study. The proposed methodology is also illustrated using quantitative high throughput screening data obtained from the US National Toxicology Program.

Time Trends in Estimates of Genetic Parameters in a Population of Layer Breeders (난용종계 집단에서의 선발에 의한 유전모수 변화 양상)

  • 최연호;오봉국
    • Korean Journal of Poultry Science
    • /
    • v.17 no.4
    • /
    • pp.255-268
    • /
    • 1990
  • This study was carried out to investigate the time-trends of genetic parameters of the dosed flock population which selected for improving egg production. Data for two layer pure lines, Line-W (Single Comb White Leghorn) and Line-B (brown layer) which have been maintained at the Mani Breeding Farm were collected from 1980 to 1985 during 5 generations. The effective number of parents per generation ranged from 148 to 366 in Line-W and 85 to 355 in Line-B, and the cumulative expected inbreeding coefficients during 5 generations of selection were 15% and 1.6%. So inbreeding could not be considered a critical factor on estimating the genetic parameters, heritabilities and genetic correlations Heritabilities of EN 300 and EN 400, primary two selected traits were significantly decreased during 5 generations but the estimates of the other 03its not showed the consistent decreasing pattern significantly. No time trends of probable consequence were evident in the genetic correlation coefficients of the traits studied. The reason for that situation was attributed to the fact that selection was conducted for multiple objectives and the relative importance of selection for the studied traits were not consistent by generations.

  • PDF

Influence of Amount of Pedigree Information and Parental Misidentification of Progeny on Estimates of Genetic Parameters in Jeju Race Horses (제주마 집단의 혈연 정보량과 정보 오류가 유전 모수 추정치에 미치는 영향)

  • Kim, Nam-Young;Lee, Sung-Soo;Yang, Young-Hoon
    • Journal of Embryo Transfer
    • /
    • v.29 no.3
    • /
    • pp.289-296
    • /
    • 2014
  • The pedigree information and race records of 1,000 m finishing time of Jeju race horses at KRA were used to study the effect of amount of pedigree information and parental misidentification on the estimates of genetic parameters. The modified data sets were made at the range of 2.5 to 25% parental misidentifications or loss of parental information of individuals with an increment of 2.5 percent. For each incremental level, 20 randomly replicated data sets were obtained and analyzed by single-trait analysis with a DF-REML(AI) algorithm. As the rate of misidentification increased or the amount of pedigree information decreased, the estimates of fraction of additive genetics variance component gradually decreased almost linearly (p<0.05), while the estimated fractions of error variance and permanent environmental variance components gradually increased for the finishing time. Regression coefficients of the percentage amount of both parents' information loss and incorrect pedigree information on additive genetic variances were -0.079 and -0.114, respectively (p<0.01). The estimate of heritability decreased by 0.92% for one percent loss of both parents' information and 1.39% for one percent increase of both parental misidentifications of progeny (p<0.01). For the consideration of probable incorrect and missing parent information of progeny in this early population of Jeju horses, the estimates of additive genetic parameters would be biased downward about ten percent. This results indicate that the amount of pedigree information loss and misidentification of progeny would severely affect estimates of genetic parameters and would reduce genetic gains for selection in Jeju horse population.

Parameterization and Application of a Forest Landscape Model by Using National Forest Inventory and Long Term Ecological Research Data (국가산림자원조사와 장기생태연구 자료를 활용한 산림경관모형의 모수화 및 적용성 평가)

  • Cho, Wonhee;Lim, Wontaek;Kim, Eun-Sook;Lim, Jong-Hwan;Ko, Dongwook W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • Forest landscape models (FLMs) can be used to investigate the complex interactions of various ecological processes and patterns, which makes them useful tools to evaluate how environmental and anthropogenic variables can influence forest ecosystems. However, due to the large spatio-temporal scales in FLMs studies, parameterization and validation can be extremely challenging when applying to new study areas. To address this issue, we focused on the parameterization and application of a spatially explicit forest landscape model, LANDIS-II, to Mt. Gyebang, South Korea, with the use of the National Forest Inventory (NFI) and long-term ecological research (LTER) site data. In this study, we present the followings for the biomass succession extension of LANDIS-II: 1) species-specific and spatial parameters estimation for the biomass succession extension of LANDIS-II, 2) calibration, and 3) application and validation for Mt. Gyebang. For the biomass succession extension, we selected 14 tree species, and parameterized ecoregion map, initial community map, species growth characteristics. We produced ecoregion map using elevation, aspect, and topographic wetness index based on digital elevation model. Initial community map was produced based on NFI and sub-alpine survey data. Tree species growth parameters, such as aboveground net primary production and maximum aboveground biomass, were estimated from PnET-II model based on species physiological factors and environmental variables. Literature data were used to estimate species physiological factors, such as FolN, SLWmax, HalfSat, growing temperature, and shade tolerance. For calibration and validation purposes, we compared species-specific aboveground biomass of model outputs and NFI and sub-alpine survey data and calculated coefficient of determination (R2) and root mean square error (RMSE). The final model performed very well, with 0. 98 R2 and 8. 9 RMSE. This study can serve as a foundation for the use of FLMs to other applications such as comparing alternative forest management scenarios and natural disturbance effects.

Estimation of conditional mean residual life function with random censored data (임의중단자료에서의 조건부 평균잔여수명함수 추정)

  • Lee, Won-Kee;Song, Myung-Unn;Jeong, Seong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.1
    • /
    • pp.89-97
    • /
    • 2011
  • The aims of this study were to propose a method of estimation for mean residual life function (MRLF) from conditional survival function using the Buckley and James's (1979) pseudo random variables, and then to assess the performance of the proposed method through the simulation studies. The mean squared error (MSE) of proposed method were less than those of the Cox's proportional hazard model (PHM) and Beran's nonparametric method for non-PHM case. Futhermore in the case of PHM, the MSE's of proposed method were similar to those of Cox's PHM. Finally, to evaluate the appropriateness of practical use, we applied the proposed method to the gastric cancer data. The data set consist of the 1, 192 patients with gastric cancer underwent surgery at the Department of Surgery, K-University Hospital.

Volatilities in the Won-Dollar Exchange Markets and GARCH Option Valuation (원-달러 변동성 및 옵션 모형의 설명력에 대한 고찰)

  • Han, Sang-Il
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.369-378
    • /
    • 2013
  • The Korean Won-Dollar exchange markets showed radical price movements in the late 1990s and 2008. Therefore it provides good sources for studying volatility phenomena. Using the GARCH option models, I analysed how the prices of foreign exchange options react volatilities in the foreign exchange spot prices. For this I compared the explanatory power of three option models(Black and Scholes, Duan, Heston and Nandi), using the Won-Dollar OTC option markets data from 2006 to 2013. I estimated the parameters using MLE and calculated the mean square pricing errors. According to the my empirical studies, the pricing errors of Duan, Black and Scholes models are 0.1%. And the pricing errors of the Heston and Nandi model is greatest among the three models. So I would like to recommend using Duan or Black and Scholes model for hedging the foreign exchange risks. Finally, the historical average of spot volatilities is about 14%, so trading the options around 5% may lead to serious losses to sellers.

Prediction for spatial time series models with several weight matrices (여러 가지 가중행렬을 가진 공간 시계열 모형들의 예측)

  • Lee, Sung Duck;Ju, Su In;Lee, So Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • In this paper, we introduced linear spatial time series (space-time autoregressive and moving average model) and nonlinear spatial time series (space-time bilinear model). Also we estimated the parameters by Kalman Filter method and made comparative studies of power of forecast in the final model. We proposed several weight matrices such as equal proportion allocation, reciprocal proportion between distances, and proportion of population sizes. For applications, we collected Mumps data at Korea Center for Disease Control and Prevention from January 2001 until August 2008. We compared three approaches of weight matrices using the Mumps data. Finally, we also decided the most effective model based on sum of square forecast error.

Bayes Risk Comparison for Non-Life Insurance Risk Estimation (손해보험 위험도 추정에 대한 베이즈 위험 비교 연구)

  • Kim, Myung Joon;Woo, Ho Young;Kim, Yeong-Hwa
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1017-1028
    • /
    • 2014
  • Well-known Bayes and empirical Bayes estimators have a disadvantage in respecting to overshink the parameter estimator error; therefore, a constrained Bayes estimator is suggested by matching the first two moments. Also traditional loss function such as mean square error loss function only considers the precision of estimation and to consider both precision and goodness of fit, balanced loss function is suggested. With these reasons, constrained Bayes estimators under balanced loss function is recommended for non-life insurance pricing.; however, most studies focus on the performance of estimation since Bayes risk of newly suggested estimators such as constrained Bayes and constrained empirical Bayes estimators under specific loss function is difficult to derive. This study compares the Bayes risk of several Bayes estimators under two different loss functions for estimating the risk in the auto insurance business and indicates the effectiveness of the newly suggested Bayes estimators with regards to Bayes risk perspective through auto insurance real data analysis.

A Study on Bayesian Approach of Software Stochastic Reliability Superposition Model using General Order Statistics (일반 순서 통계량을 이용한 소프트웨어 신뢰확률 중첩모형에 관한 베이지안 접근에 관한 연구)

  • Lee, Byeong-Su;Kim, Hui-Cheol;Baek, Su-Gi;Jeong, Gwan-Hui;Yun, Ju-Yong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2060-2071
    • /
    • 1999
  • The complicate software failure system is defined to the superposition of the points of failure from several component point process. Because the likelihood function is difficulty in computing, we consider Gibbs sampler using iteration sampling based method. For each observed failure epoch, we applied to latent variables that indicates with component of the superposition mode. For model selection, we explored the posterior Bayesian criterion and the sum of relative errors for the comparison simple pattern with superposition model. A numerical example with NHPP simulated data set applies the thinning method proposed by Lewis and Shedler[25] is given, we consider Goel-Okumoto model and Weibull model with GOS, inference of parameter is studied. Using the posterior Bayesian criterion and the sum of relative errors, as we would expect, the superposition model is best on model under diffuse priors.

  • PDF