• Title/Summary/Keyword: 오존산화반응

Search Result 133, Processing Time 0.024 seconds

A Study on Dissolve and Remove Analysis of Organic Chemicals Using a Mixed Method of Advanced Oxidation and Micro Filtering - Water Drinking Point - (고도산화와 정밀여과의 혼성공법을 이용한 유기화학물질의 분해 및 제거분석에 관한 연구 - 먹는 물을 중심으로 -)

  • An, Tai-Young;Jun, Sang-Ho;Ahn, Tae-Seok;Han, Mi-Ae;Hur, Jang-Hyun;Pak, Mi-Young
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.99-111
    • /
    • 2007
  • It is impossible to remove toxic organic substances that are recognized as a cancer caused suspicious element in drinking water using the conventional water purification method. This study introduces groundwater into a reaction chamber as an effective amount of water to process this water using a mixed method of AOP oxidation and M/F membrane and purifies it as a desirable level by artificially mixing such toxic substances in order to effectively process the water. Based on this fact, this study configures an optimal operation condition. The VOCs existed in toxic substances was investigated as a term of phenol and toluene, and agricultural chemicals were also investigated as a term of parathion, diazinon and carbaryl. The experiment applied in this study was performed using a single and composite soolution. In the operation condition applied to fully dissolve and remove such substances, the amount of $H_2O_2$ injected in the process was 150 mL of a fixed quantity, the value of pH was configured as $5.5{\sim}6.0$, the temperature was controlled as a range of $12{\sim}16^{\circ}C$, the dissolved amount of ozone was applied more than 5.0 mg/L, the reaction time was determined as an optimal condition, such as $30{\sim}40$ minutes, and the segregation membrane in the same reactor was determined for acquire water drinking of large quantity using a pore size of $0.45{\mu}m$ M/F membrane.

Removal of Ammonia-N by using the Immobilized Nitrifier Consortium in Aquaculture System (양어장에서 고정화된 질화세균군을 이용한 암모니아 질소 제거)

  • SUH Kuen-Hack;KIM Yong-Ha;AHN Kab-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.868-873
    • /
    • 1997
  • Nitrifier consortium entrapped in Ca and Ba-alginate beads were packed into two reactors and studied for removing ammonia-nitrogen in aquaculture system. The ammonia-nitrogen concentration of the influent was continually kept about 2 ppm. At the hydraulic residence time of 0.6 hours, ammonia-nitrogen removal amount of two reactors was about 52.6 and 51.0 g $NH_3-N/m^3/day$, respectively. The ability of adjusting to an impulsive leading which was happened according to variations of HRT was better at Ba-alginate reactor, but its discrepancy was not so large. At the respect of removing ammonium-nitrogen, two reactors showed the similar ability of treating recirculating water.

  • PDF

A Study on Ozonation of 4-nonylphenol (4-nonylphenol의 오존산화 처리반응에 관한 연구)

  • Lee, Cheal-Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.736-743
    • /
    • 2017
  • In this study, 4-nonylphenol (4-NP), an endocrine disrupting chemical, was removed by ozone treatment processes under the various experimental conditions including UV irradiation, $TiO_2$ addition. The ozone flow rate and concentration were maintained at $1.0L{\cdot}min^{-1}$ and $70{\pm}5mg{\cdot}L^{-1}$. The pH, COD and TOC of the samples were obtained every 10 minutes for 60 minutes in laboratory scale batch reactor. We found that the combination of UV irradiation and $TiO_2$ addition for ozonation improves the removal efficiency of COD and TOC in 4-NP aqueous solution. In case of the $O_3/UV/TiO_2$ system, COD and TOC were greatly reduced to 85.3 ~ 94.0% and 89.2 ~ 97.2%, respectively. 4-NP degradation rate constants, $k_{COD}$ and $k_{TOC}$, were calculated based on the COD and TOC values. Significantly, $k_{COD}$ and $k_{TOC}$ were improved in the $O_3/UV/TiO_2$ treatment process compared with single $O_3$ process, because the oxidation and the mineralization of 4-NP were increased by generating of the hydroxyl radical. The $k_{COD}$ and $k_{TOC}$ were obtained to be $5.81{\times}10^{-4}{\sim}10.8{\times}10^{-4}sec^{-1}$ and $11.9{\times}10^{-4}{\sim}19.4{\times}10^{-4}sec^{-1}$ in the $O_3/UV/TiO_2$ process. Activation energy ($E_a$) of ozone oxidation reaction based on $k_{COD}$ and $k_{TOC}$ were increased in order of $O_3/UV/TiO_2$ < $O3/UV$ < $O_3/TiO_2$ < $O_3$ process. It was confirmed that the addition of $TiO_2$ and UV irradiation to the ozone oxidation reaction significantly reduced the $E_a$ value and the degradation of 4-NP.

Characteristics of The Wastewater Treatment Processes for The Removal of Dyes in Aqueous Solution(2) - Ozonation or ACF Adsorption Treatment of Reactive Dyes - (수용액 중의 염료 제거를 위한 폐수처리공정의 특성(2) - 반응성염료의 오존산화 및 섬유상활성탄 흡착 처리 -)

  • Han, Myung-Ho;Huh, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.19 no.3
    • /
    • pp.26-36
    • /
    • 2007
  • This study was carried out to treat the aqueous solutions containing reactive dyes(RB19, RR120 and RY179) by the Ozone demand flask method and adsorption process using activated carbon fiber(ACF) which are one of the main pollutants in dye wastewater. Ozone oxidation of three kinds of the reactive dyes was examined to investigate the reactivity of dyes with ozone, competition reaction and ozone utilization on various conditions for single- and multi-solute dye solution. Concentration of dyes was decreased continuously with increasing ozone dosage in the single-solute dye solutions. Competition quotient values were calculated to investigate the preferential oxidation of individual dyes in multi-solute dye solutions. Competition quotients(CQi) and values of the overall utilization efficiency, ${\eta}O_3$, were increased at 40mg/l of ozone dosage in multi-solute dye solutions. ACF(A-15) has much larger specific surface area$(1,584m^2/g-ACF)$ in comparison with granular activated carbon adsorbent (F400, $1,125m^2/g-GAC$), which is commonly used, and most of pores were found to be micropores with pore radius of 2nm and below. It was found that RB19 was most easily adsorbed among the dyes in this study. In the case of PCP (p-chlorophenol) and sucrose, which are single component adsorbate, adsorption capacities of ACF(A-15) were in good agreement with the batch adsorption measurement, and saturation time predicted of ACF columns for these components was also well agreed with practically measured time. But in the case of reactive dyes, which have relatively high molecular weight and aggregated with multi-components, adsorption capacities or saturation time predicted were not agreed with practically measured values.

The Effects of SO2 and NH3 on the N2O Reduction with CO over MMO Catalyst (MMO 촉매와 CO 환원제에 의한 N2O 분해에서 SO2 및 NH3 영향 연구)

  • Chang, Kil Sang;You, Kyung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.653-657
    • /
    • 2009
  • Nitrous oxide is a typical greenhouse gas which is produced from various organic or fossil fuel combustion processes as well as chemicals producing plants. $N_2O$ has a global worming potential of 310 times that of $CO_2$ on per molecule basis, and also acts as an ozone depleting material in the stratosphere. However, its removal is not easy for its chemical stability characteristics. Most SCR processes with several effective reducing agents generally require the operation temperature higher than $450^{\circ}C$, and the catalytic conversion becomes decreased significantly when NOx is present in the stream. Present experiments have been performed to obtain basic design data of actual application concerning the effects of $SO_2$ and $NH_3$ on the interim and long term activities of $N_2O$ reduction with CO over the mixed metal oxide (MMO) catalyst derived from a hydrotalcite-like compound precursor. The MMO catalysts used in the experiments, have shown prominent activities displaying full conversions of $N_2O$ near $200^{\circ}C$ when CO is introduced. The presence of $SO_2$ is considered to show no critical behavior as can be met in the $NH_3$ SCR DeNOx systems and the effect of $NH_3$ is considered to play as mere an impurity to share the active sites of the catalysts.

Saline Water Treatment by Underwater Plasma

  • Yu, Seung-Min;Yu, Seung-Yeol;Park, Jun-Seok;Hong, Eun-Jeong;Hong, Yong-Cheol;Lee, Sang-Ju;Kim, Ye-Jin;No, Tae-Hyeop;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.19-19
    • /
    • 2011
  • 수중방전은 다양한 라디칼을 직접 물 속에서 발생시키기 때문에 수처리 공정에 다양한 응용이 가능하다. 특히, 최근에 선박평형수 등의 살균이 국제적인 이슈가 되고 있고, 2017년까지는 모든 선박에 살균을 위한 수처리 설비가 의무화된다. 본 연구에서는 염분이 있는 수체에서의 방전공정을 연구하고 이를 수처리공정에 적용할 수 있는 방법에 대해 연구하였다. 해수의 경우 전도도가 53mS로 자유로운 전하의 이동이 가능하기 때문에 일반적인 민물방전의 전원과 전극 등으로는 방전을 할 수 없다. 이에 세라믹과 금속의 이중구조로 되어 있는 모세관전극을 개발하여 전도성이 있는 수체에서의 방전을 이루었다. 전원장치로는 60 Hz, 380 V를 1차측에 인가하여 2차측에서 약 3 kV, 10 kW의 파워가 발생하는 12위상차 교류전원장치를 개발하여 사용하였다. 모세관 내부에 전압이 인가되면 전류가 발생하여 joule heating에 의하여 모세관 내부에 기포가 형성된다. 이 때, 전류의 단락이 이루어지면서 고전압쪽에 전하가 축적되며 기포내부의 E-field가 상승한다. 이후 기포 내에서 방전이 개시되며 각종 라디칼을 생성한다. 방전에 의해 생성되는 산화제로는 오존, OH라디칼, 과산화수소 등이 있으며, 해수에서는 Cl-의 결합에 의하여 Cl2 가스가 발생한다. 약 30,000 J/L의 체적에너지에 대하여 생성되는 총염소의 농도는 2.5 mg/L이다. 수중방전의 적용대상으로 선박평형수, 멤브레인과의 결합, 용존기포부상법을 선정하여 적용가능성을 연구하였다. 먼저 선박평형수 살균처리를 위해 해수의 처리유량을 20 lpm으로 유지하고 대장균, 바실러스, 조류(테트라셀미스) 등을 투입하여 전극 12개가 삽입된 12위상차 플라즈마 반응기를 통과시켰더니, 약 30,000 J/L의 체적에너지에 대하여 1일 후의 살균력이 각각 99.99, 99.99, 99.9%의 살균력을 나타내었다. 이는 국제해사기구에서 권장하는 살균수준인 99.9%를 초과하는 수치이다. 플라즈마를 이용한 해수살균공정의 안정적 운전을 위해 후단에 UF멤브레인을 추가하여 잔류생존 미생물을 제거할 수 있다. 이를 위해 플라즈마가 후단의 멤브레인 운전에 미치는 영향을 평가하였다. 카올린과 탄산칼슘을 오염원으로 각각 투입하여 멤브레인으로 처리를 하였을 때, 방전 직후 멤브레인에 걸리는 막간압력차가 약 30% 감소하였는데, 이는 막에 형성된 파울링이 방전에 의해 제거된 것으로 평가할 수 있다. 수중방전은 다양한 산화제를 생성함과 동시에 미세기포를 발생시키는데 이는 수중유기물의 부상분리에 적용될 수 있다. 방전모세관전극의 내부직경을 1 mm로 유지하고, 60 Hz, 교류전원으로 방전한 결과 평균입경 44 um의 기포를 발생시켰고, 이는 일반적으로 용존공기부상법에 사용되는 기포의 크기와 일치한다.

  • PDF

Atmospheric Pressure Plasma Treatment of Aqueous Bisphenol A Solution (비스페놀 A 수용액의 대기압 플라즈마 처리)

  • Jo, Jin-Oh;Choi, Kyeong Yun;Gim, Suji;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • This work investigated the plasma treatment of aqueous bisphenol A (BPA) solution and mineralization pathways. For the effective contact between plasmatic gas and aqueous BPA solution, the plasma was created inside a porous ceramic tube, which was uniformly dispersed into the aqueous solution through micro-pores of the ceramic tube. Effects of the gas flow rate, applied voltage and treatment time on the decomposition of BPA were examined, and analyses using ultraviolet (UV) spectroscopy, ion chromatography and gas chromatography-mass spectrometry were also performed to elucidate mineralization mechanisms. The appropriate gas flow rate was around $1.0L\;min^{-1}$; when the gas flow rate was too high or too low, the BPA decomposition performance at a given electric power decreased. The increase in the voltage improves the BPA decomposition due to the increased electric power, but the energy required to remove BPA was similar, regardless of the voltage. Under the condition of $1.0L\;min^{-1}$ and 20.8 kV, BPA at an initial concentration of $10L\;min^{-1}$ (volume : 1 L) was successfully treated within 30 min. The intermediates produced by the attack of ozone and hydroxyl radicals on BPA were further oxidized to stable compounds such as acetate, formate and oxalate.

Evaluation of the Estrogenic Activity by Yeast Two-hybrid Assay and Enzyme-linked Immunosorbent Assay in Sewage Treatment Plant (하수처리장의 내분비계장애물질에 대한 Yeast Two-hybrid Assay와 Enzyme-linked Immunosorbent Assay에 의한 에스트로겐활성도 평가)

  • Lee, Byoung-Cheun;Ra, Jin-Sung;Kim, Sang-Don;Kawai, Hukiko;Lee, Chul-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.771-777
    • /
    • 2007
  • Several endocrine disrupting chemicals(EDCs) were monitored to evaluate the estrogenic activities and the concentrations by yeast two-hybrid assay and enzyme-linked immunosorbent assay(ELISA) in sewage treatment plant(STP) which consist of industrial and domestic line. In the influent of domestic line, estrone, 17$\beta$-estradiol, 17$\alpha$-ethinylestradiol and alkylphenolethoxylate(APE) were detected up to 167.1, 39.7, 7.3 and 145.4 ng/L, respectively. The average removal efficiency of 17$\beta$-estradiol after the activated sludge process was 77.5% and further removed to 80.8% after the sand filtration-ozonation step. These results suggests that the activated sludge process has limited potential to remove the estrogenic activity effectively. The contributions of the estrogenic chemicals to the estrogenic activities were 70.7, 23.3, 3.7 and 2.3% for estrone, 17$\beta$-estradiol 17$\alpha$-ethinylestradiol and APE, respectively, in the domestic line effluents. Therefore, 17$\beta$-estradiol and estrone contributed most of the estrogenic activity in the domestic line effluents.

Removal of Bromate by Iron, Copper and Silver Impregnated Activated Carbon (철, 구리, 은 첨착활성탄을 이용한 브롬산염의 제거)

  • Choi, Seong-Woo;Park, Seung-Cho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.178-182
    • /
    • 2006
  • The purpose of this research is to remove the bromate that is a disinfection by-poduct of water purification by ozone. I achieved a high rate of removal with iron, copper, or silver impregnated activated carbon by using both the adsorbing power of granular activated carbon and the oxidizing power of metal ions as deoxidizing agents. In the removal test of bromate with the quantity of activated carbon input I injected each activated carbon by 0.1, 0.3, 0.1, and 1.0 g and let them react for 240 minutes. I found the quantity of removed bromate was in proportion to the amount of input. The removal rate of bromate increased about 20% when I used acid treated activated carbon. The metal impregnated activated carbon had a higher removal rate of bromate than that of general activated carbon by about $30{\sim}50%$. Iron impregnated activated carbon showed a 92% removal rate of bromate. Iron, copper, or silver impregnated activated carbon removed about $0.9{\sim}1.5mg\;{BrO_3}^-/g$ while general activated carbon removed about $0.02{\sim}0.45mg\;{BrO_3}^-/g$. In the continuous column reaction, there were breakthrough phenomena at 96, 180, and 252 hours when I tested EBCT by 1, 2 and 3 minutes while I was changing the flux rate of bromate from 15.6 to 46.8 mL/min.

Degradation of Taste-and-Odor Compounds and Toxins in Water Supply Source Using Plasma (플라즈마를 이용한 상수원 이취미 및 독성물질 분해 연구)

  • Jo, Jin Oh;Kim, Sang Don;Lim, Byung-Jin;Hyun, Young Jin;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.518-524
    • /
    • 2013
  • This study investigated the degradation of taste-and-odor compounds and toxins using dielectric barrier discharge plasma. The degradation of taste-and-odor compounds was conducted on geosmin and 2-methyl isoborneol (2-MIB), and the toxins investigated were microcystin-LR (MC-LR), microcystin-RR (MC-RR), microcystin-YR (MC-YR) and anatoxin-a. Largely depending on the type of gas fed to the plasma reactor, the degradation efficiencies of the taste-and-odor compounds decreased in order of oxygen (100%) > dry air (96%) > nitrogen (5%) for geosmin and in order of oxygen (100%) > dry air (94%) > nitrogen (2%) for 2-MIB on the basis of 150 s reaction time. This result suggests that the oxidative reactive species generated during plasma treatment, especially long-lived ozone, are mainly responsible for the degradation of these compounds. When using oxygen as the feed gas, geosmin and 2-MIB were totally degraded within 150 s, microcystins within 10 s, and anatoxin-a within 30 s. It was found that the taste-and-odor compounds and toxins were degraded more rapidly in real lake water than in distilled water.