• Title/Summary/Keyword: 오일씰

Search Result 18, Processing Time 0.038 seconds

Optimum Design of Cross Section Lateral Damper Oil Seals for High Speed Railway Vehicle (고속 철도 차량 횡댐퍼 오일 씰의 형상 단면 최적설계)

  • Hwang, Ji-Hwan;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.579-584
    • /
    • 2017
  • The damper oil seal of a high-speed railway vehicle is made from nitrile butadiene rubber (NBR) in order to prevent lubricant from leaking into the damper and to stop harmful contaminants from entering the external environment while in service. Oil leakage through the seal primarily occurs from fatigue failure of the damper. Cumulative damage of the seal occurs due to the contact force between the rod and the rubber during movement due to track irregularities and cants, among other factors. Thus, the design of the oil seal should minimize the maximum principal strain at weak points. In this study, the optimal cross section of the damper oil seal was found using the multi-island genetic algorithm method to improve the durability of the damper. The optimal shape of the oil seal was derived using process automation and design optimization software. Nonlinear material properties for finite element analysis (FEA) of the rubber were determined by Marlow's model. The nonlinear FEA confirmed that the maximum principal strain at the oil leakage point was decreased 24% between the initial design and the optimum design.

A Study on the Enhancement of Durability for the Power Steering Oil Seal of Automotive (자동차 파워스트어링 오일씰 내구성 향상에 관한 연구)

  • Choi, Hyun-Jin;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.83-88
    • /
    • 2010
  • This study aimed to enhance the durability by distributing the stress concentration at the contact and increasing the mechanical characteristics, as well as by changing the surface shape for LIP in the low-pressure seal among oil seals installed to the power steering of automotive. Accordingly, results were derived from comparisons and reviews with oil seals under the existing mass production by carrying out the performance tests after designs and productions are done with the addition of embo shapes on the surface of LIP in the low-pressure seal. As a result of this study, it has been identified that the durability of oil seals with the addition of embo shapes was enhanced with higher radial force and less variation in the internal diameter for the LIP. In addition, it was seen that the sealing ability for those oil seals is superior to the existing oil seals as their rotational torque values are less than those of the existing oil seals.

Performance Evaluation of PTFE Oil-seal for Automotive Engine Front Part (자동차 엔진 프론트부의 PTFE 오일씰의 성능평가)

  • Choi, Hyun-Jin;Park, Chul-Woo;Lee, Jong-Cheol;Kim, Jong-Gab;Choi, Seong-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.66-71
    • /
    • 2011
  • This study analyzed the mechanical characteristics and evaluated their subsequent performance for two types of seals which reinforced characteristics with lower friction and anti-wear functions among the foremost important features in the automotive engine seals; one with the addition of glass fiber to PTFE(Polytetrafluoro ethylene); the other with the addition of self-lubricant molybdenumin addition to the glass fiber. Based on the configuration design of seal installed to the front part in the automotive engine, this study carried out interpretations on the stress and reaction for those two types of oil seals to compare the maximum stress and contact load generated from the seal steel, rubber and PTFE lip. This study also verified the stress concentration and anti-wear performance through the coefficient of friction, torque and durability test by producing two types of PTFE seals actually.

Inspection of Automotive Oil-Seals Using Artificial Neural Network and Vision System (인공신경망과 비전 시스템을 이용한 자동차용 오일씰의 검사)

  • 노병국;김기대
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.83-88
    • /
    • 2004
  • The Classification of defected oil-seals using a vision system with the artificial neural network is presented. The artificial neural network fur classification consists of 27 input nodes, 10 hidden nodes, and one output node. The selection of the number of the input nodes is based on an observation that the difference among the defected, non-defected, and smeared oil-seals is greatly pronounced in the 26 step gray-scale level thresholding. The number of the hidden nodes is chosen as a result of a trade-off between accuracy and computing time. The back-propagation algorithm is used for teaching the network. The proposed network is capable of successfully classifying the defected from the smeared oil-seals which tend to be classified as the defected ones using the binary thresholding. It is envisaged that the proposed method improves the reliability and productivity of the automotive vision inspection system.

A Study on Oil-Seal Rubber Mixing Using ANOVA (분산분석을 이용한 오일씰 고무 배합에 관한 연구)

  • Yoon, Hyun-cheol;Choi, Ju Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.69-75
    • /
    • 2019
  • Oil seals have a great effect on transmission performance and durability. In this study, the optimal rubber mix was derived using dispersion analysis to obtain excellent oil-seal rubber properties. ANOVA was performed twice. The factors were polymers, carbon, magnesium oxide, and calcium hydroxide, which were used as four factors in ANOVA. The response factors were four items (hardness, tensile strength, elongation rate, and compression deformation) obtained through an experiment with a confidence level of 95%. In the first ANOVA, 168 tests were performed, and in the secondary ANOVA, 24 physical tests were conducted using polymers and carbon derived from the primary ANOVA. Through the ANOVA, we derived a rubber mixture recipe.

Study on the Oil Seal Application Using Polytetrafluoroethylene Composites (Polytetrafluoroethylene 복합재료를 이용한 오일씰 응용에 관한 연구)

  • Ha, Ki-Ryong;Lee, Jong-Cheol;Lee, Young-Seok
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.32-39
    • /
    • 2010
  • The mechanical properties of PTFE 100%, PTFT 90% + carbon black 10%, PTFE 85% + glass fiber 15%, PTFE 80% + glass fiber 15% + molybdenum disulfide ($MoS_2$) 5%, PTFE 75% + glass fiber 25%, and PTFE 75% + carbon black 18% + graphite 7% composites were investigated in this study. The differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to examine the heat of fusion(${\Delta}H_f$) and thermal stability of the composites. Also, the wear surface and wear volume of PTFE lip seal were examined using the durability test. Wear surface was observed using scanning electron microscope (SEM). It was found that the hardness, wear resistance and durability were enhanced by adding glass fiber and molybdenum disulfide into pure PTFE, but tensile strength and elongation were decreased. According to the experimental results, the composite (PTFE + 15% glass fiber + 5% molybdenum disulfide) showed the best properties for applying to oil-seal among six types of PTFE composites.

A Study on the Design of Transmission Oil-Seal Using 2D Finite Element Analysis (2D 유한요소해석을 이용한 트랜스미션 오일 씰 설계에 관한 연구)

  • Yoon, Hyun-cheol;Jeon, Gi Hyun;Choi, Ju Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.85-93
    • /
    • 2019
  • Oil seals are most essential parts in mechanical lubrication system to maintain the close gaps between stationary and high rotating components, and to help prevent oil leakages. Oil seals also can prevent harmful contaminants entering from outside to machinery, especially in severe environments. Therefore, the oil seals have an important performance in the machinery components. The performance of the oil seals are influenced by the design variables such as amount of interference gap between the main lip and shaft, the angle of main lip at air and oil sides and the distance between the garter spring and main lip. In the present study, a finite element analysis was performed to evaluate the oil seal performance with the considerations of number of oil seal dust lips and angle of the lip at oil side with the different design variables. As a result from the FEM analysis, the stress and contact pressure distributions was derived, based on this, performance of the sealing and durability were determined.

Effects of Activator on Rubber Characteristics for Gasket to Lithium Ion Battery (리튬 이온 전지용 개스킷 고무 물성에 미치는 가교조제의 영향)

  • Kang, Dong-gug;Kim, Hye-young;Kang, Young-im;Hur, Byung-ki;Seo, Kwan-ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.395-399
    • /
    • 2011
  • Material of the gasket for lithium ion battery requires the chemical resistance, the electrical insulting property, the compression set, the anti-contamination level and the low temperature resistance. We compounded ethylene propylene diene monomer (EPDM), which showed widely different solubility parameter index, with adjusting the amount of metal oxide as an activator. We did long-term test and compression set against an electrolyte with consideration for operating conditions in lithium-ion battery. In these tests, we checked the physical, chemical characteristics and the effect to lithium ion battery with different kinds of activators. In case of rubber with ZnO as an activator, through 1000 h depositing test in propylene carbonate which is one of representative solvents, we could get the satisfying characteristics and result. However, $Zn^{2+}$ had eluted in the ion elution test. So, ZnO should be limited in EPDM compound for the gasket material in lithium-ion battery.