• Title/Summary/Keyword: 오염지하수

Search Result 1,736, Processing Time 0.036 seconds

A study on the definition of the healthy urban water cycle (건전한 도시물순환의 정의에 대한 연구)

  • Kim, Hyeonju;Khatatbeh, Arwa;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.476-476
    • /
    • 2021
  • 도시화로 인한 불투수율 증가는 자연 물순환을 왜곡시켜 표면 유출량 증가, 침투량 감소, 증발량 감소 등을 야기한다. 뿐만 아니라 도시화로 인한 인구밀도 집중은 배출오염물질의 평균 농도와 물 사용량을 증가시켜 인공 물순환의 왜곡을 초래한다. 왜곡된 물순환의 회복을 위해 건전한 도시 물순환의 정의를 정립하는 것은 필수적이다. 본 연구는 물순환과 관련된 문헌조사와 평가 분석 방법을 검토하여, 건전한 도시 물순환을 지속가능성, 공평성, 안전성, 효율성 측면에서 시간, 공간, 이해관계자들이 균형을 이루는 것에 초점을 맞추고자 한다. 과거와 현재 상태, 그리고 미래 기후변화시나리오 적용 시 어떤 변화가 있으며, 이에 따른 물순환 관리체계가 확보될 수 있는 모습, 공간적 측면에서 물의 수평적·수직적 이동이 치우침이 없는 모습, 수요자 입장에서 가뭄이나 홍수로 인한 재산·인명 피해가 최소화된 모습, 공급자 입장에서 수량·수질 관리체계가 확보된 모습을 각각 지속가능성, 공평성, 안전성, 효율성으로 정의 내렸다. 도시 물순환의 적절한 상태를 제안하기 위해서 도시 물순환의 지표로 증발산율, 지표수유출률, 지하수유출률, 침투율로 선정하였다. 앞서 언급한 네 가지 측면(지속가능성, 안전성, 공평성, 효율성)에서의 모습과 네 개의 지표 상태를 비교하여 균형 잡힌 도시 물순환의 상태를 제안하고자 한다. 정의에 제시된 네 가지 측면에 대한 하위 항목은 WAMIS, KOSTAT 등을 통해 조사하고 국내 주요 도시와 서울대학교 관악캠퍼스 내에서 분석하고자 한다. 본 연구를 통해 도시 정책 설립 및 이해관계자들에게 수문학적 관점에서 건전한 도시화의 방향을 줄 수 있을 것이다.

  • PDF

Adsorption of Arsenate on the Synthesized Layered Double Hydroxide Materials (층상이중 수산화물을 이용한 5가 비소 흡착 특성)

  • Choi, Young-Mu;Choi, Won-Ho;Kim, Jung-Hwan;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.91-96
    • /
    • 2009
  • Layered double hydroxide is synthesized and used in the arsenate adsorption experiments. The shapes of two materials analyzed by TEM showed that unheated material is amorphous in shape, micro-sized while heat treated material showed more crystallized in shape and nano-sized. X-ray diffraction showed this result more obvious. $N_2$ adsorption-desorption results showed that the materials are mesoporous and the specific surface area of the heated material is more than two times larger than the unheated material. Adsorption of As(V) is expected to be more in the heated material than the unheated material. Kinetic test of arsenate adsorption showed very fast reaction. The reactivity of Fe with As(V) might be the main factor for this result. The reaction kinetic of the heated and the unheated materials were similar and even the adsorption isotherms showed similar results for both materials. Both materials are found to be useful in remediation of soil and groundwater polluted by waste mine tailings consist of high concentration of As(V).

A study on watershed hydrologic cycle quantification and an evaluation framework of its hydrologic soundness (유역 물순환의 정량화 및 건전성 평가체계 연구)

  • Lee, Sangho;Kang, Taeuk;Jin, Youngkyu;Jo, Young Sik;Jeong, Hyunsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.119-119
    • /
    • 2022
  • 인위적, 자연적 요인에 의한 물순환 왜곡과 물순환 건전성 저하는 이수, 치수, 환경 등 다양한 물 관리 분야의 문제를 일으키고 있다. 이에 건전한 유역 물순환 관리에 관한 사회적 요구가 증대되고 있다. 유역의 물순환 관리를 위해서는 유역 전반의 물 이동과 물 이용에 관한 정량적인 평가가 선행되어야 하고, 유역의 물순환 건전성을 평가할 수 있는 체계가 필요하다. 이 연구에서 물순환 정량화를 위해 자연계 및 인공계 물순환 요소를 반영한 유역 유출 모형을 구축하였고, 관측 자료와 모형을 통해 분석된 결과를 이용하여 물순환을 정량화하였다. 한편, 물순환 건전성 평가를 위해 물환경, 물이용, 물안전의 3가지 범주 내에 수질 관리, 비점오염 관리, 수생태 관리, 하천유지기능, 지하수 보전, 치수 관리, 이수 관리의 7가지 항목에 대한 건전성을 평가할 수 있는 평가지표와 기준을 제시하였다. 그리고 계층 분석적 의사결정 기법에 따른 가중치를 이용하여 7개의 평가항목을 종합한 물순환 건전성 지수(hydrologic soundness index; HSI)를 도입하였다. 구성된 물순환 정량화 및 건전성 평가체계를 경안천과 남강, 미호천, 황룡강 중권역에 적용하여 중권역별로 필요한 물순환 개선 사업과 투자 우선순위가 높은 표준유역을 식별하였다. 이 연구에서 제시한 물순환 정량화 및 건전성 평가체계는 유역의 다양한 물 문제를 객관적으로 진단하는 한 가지 방편으로서, 유역의 물 문제 해결을 위한 기술적 정보 제공에 이바지할 수 있다.

  • PDF

Selection of Filamentous Cyanobacteria and Optimization of Culture Condition for Recycling Waste Nutrient Solution (폐양액 활용을 위한 Filamentous Cyanobacteria의 선발 및 최적배양)

  • Yang, Jin-Chul;Chung, Hee-Kyung;Lee, Hyoung-Seok;Choi, Seung-Ju;Yun, Sang-Soon;Ahn, Ki-Sup;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • The discharge of waste nutrient solution from greenhouse to natural ecosystem leads to the accumulation of excess nutrients that results in contamination or eutrophication. There is a need to recycle the waste nutrient solution in order to prevent the environmental hazards. The amount and kind of nutrients in waste nutrient solution might be enough to grow photosynthetic microorganisms. Hence in the present study, we examined the growth and mass cultivation of cyanobacteria in the waste nutrient solution with an objective of removing N and P and concomitantly, its mass cultivation. Four photosynthetic filamentous cyanobacteria (Anabaena HA101, HA701 and Nostoc HN601, HN701) isolated from composts and soils of the Chungnam province were used as culture strains. Among the isolates, Nostoc HN601 performed faster growth rate and higher N and P uptake in the BG-II ($NO_3{^-}$) medium when compared to those of other cyanobacterial strains. Finally, the selected isolate was tested under optimum conditions (airflow at the rate of $1L\;min^{-1}$. in 15 L reactor, initial pH 8) in waste nutrient solution from tomato hydroponic in green house condition. Results showed to remove 100% phosphate from the waste nutrient solution in the tomato hydroponics recorded over a period of 7 days. The growth rate of Nostoc HN601 was $16mg\;Chl-a\;L^{-1}$ in the waste nutrient solution from tomato hydroponics with optimum condition, whereas growth rate of Nostoc HN601 was only $9.8mg\;Chl-a\;L^{-1}$ in BG-11 media. Nitrogen fixing capacity of Nostoc HN601 was $20.9nmol\;C_2H_4\;mg^{-1}\;Chl-a\;h^{-1}$ in N-free BG-11. The total nitrogen and total phosphate concentration of Nostoc HN601 were 63.3 mg N gram dry weight $(GDW)^{-1}$ and $19.1mg\;P\;GDW^{-1}$ respectively. Collectively, cyanobacterial mass production using waste nutrient solution under green house condition might be suitable for recycling and cleaning of waste nutrient solution from hydroponic culture system. Biomass of cyanobacteria, cultivated in waste nutrient solution, could be used as biofertilizer.

Evaluation of Denitrification Reactivity by the Supported Nanoscale Zero-Valent Iron Prepared in Ethanol-Water Solution (이중용매에서 제조된 나노영가철을 이용한 질산성질소의 환원반응성 평가)

  • Park, Heesu;Park, Yong-Min;Oh, Soo-Kyeong;Lee, Seong-Jae;Choi, Yong-Su;Lee, Sang-Hyup
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1008-1012
    • /
    • 2008
  • Nanoscale zero-valent iron(nZVI) is famous for its high reactivity originated from its high surface area and it has received considerable attentions as one of the latest innovative technologies for treating contaminated groundwater. Due to its fine powdery form, nZVI has limited filed applications. The efforts to overcome this shortcoming by immobilizing nZVI on a supporting material have been made. This study investigated the differences of resin-supported nZVI's characteristics by changing the preparation methods and evaluated its reactivity. The borohydride reduction of an iron salt was proceeded in ethanol/water solvent containing a dispersant and the synthesis was conducted in the presence of ion-exchange resin. The resulting material was compared to that prepared in a conventional way of using de-ionized water by measuring the phyrical and chemical characteristics. BET surface area and Fe content of nZVI-attached resin was increased from $31.63m^2/g$ and 18.19 mg Fe/g to $38.10m^2/g$ and 22.44 mg Fe/g, respectively, by switching the solution medium from water to ethanol/water with a dispersant. The reactivity of each material was tested using nitrate solution without pH control. The pseudo first-order constant of $0.462h^{-1}$ suggested the reactivity of resin-supported nZVI prepared in ethanol/water was increased 61 % compared to that of the conventional type of supported nZVI. The specific reaction rate constant based on surface area was also increased. The results suggest that this new supported nZVI can be used successfully in on-site remediation for contaminated groundwater.

Scaling up of single fracture using a spectral analysis and computation of its permeability coefficient (스펙트럼 분석을 응용한 단일 균열 규모확장과 투수계수 산정)

  • 채병곤
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.29-46
    • /
    • 2004
  • It is important to identify geometries of fracture that act as a conduit of fluid flow for characterization of ground water flow in fractured rock. Fracture geometries control hydraulic conductivity and stream lines in a rock mass. However, we have difficulties to acquire whole geometric data of fractures in a field scale because of discontinuous distribution of outcrops and impossibility of continuous collecting of subsurface data. Therefore, it is needed to develop a method to describe whole feature of a target fracture geometry. This study suggests a new approach to develop a method to characterize on the whole feature of a target fracture geometry based on the Fourier transform. After sampling of specimens along a target fracture from borehole cores, effective frequencies among roughness components were selected by the Fourier transform on each specimen. Then, the selected effective frequencies were averaged on each frequency. Because the averaged spectrum includes all the frequency profiles of each specimen, it shows the representative components of the fracture roughness of the target fracture. The inverse Fourier transform is conducted to reconstruct an averaged whole roughness feature after low pass filtering. The reconstructed roughness feature also shows the representative roughness of the target subsurface fracture including the geometrical characteristics of each specimen. It also means that overall roughness feature by scaling up of a fracture. In order to identify the characteristics of permeability coefficients along the target fracture, fracture models were constructed based on the reconstructed roughness feature. The computation of permeability coefficient was performed by the homogenization analysis that can calculate accurate permeability coefficients with full consideration of fracture geometry. The results show a range between $10^{-4}{\;}and{\;}10^{-3}{\;}cm/sec$, indicating reasonable values of permeability coefficient along a large fracture. This approach will be effectively applied to the analysis of permeability characteristics along a large fracture as well as identification of the whole feature of a fracture in a field scale.

Analysing the effect of impervious cover management techniques on the reduction of runoff and pollutant loads (불투수면 저감기법의 유출량 및 오염부하량 저감 효과 분석)

  • Park, Hyung Seok;Choi, Hwan Gyu;Chung, Se Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.16-34
    • /
    • 2015
  • Impervious covers(IC) are artificial structures, such as driveways, sidewalks, building's roofs, and parking lots, through which water cannot infiltrate into the soil. IC is an environmental concern because the pavement materials seal the soil surface, decreasing rainwater infiltration and natural groundwater recharge, and consequently disturb the hydrological cycle in a watershed. Increase of IC in a watershed can cause more frequent flooding, higher flood peaks, groundwater drawdown, dry river, and decline of water quality and ecosystem health. There has been an increased public interest in the institutional adoption of LID(Low Impact Development) and GI(Green Infrastructure) techniques to address the adverse impact of IC. The objectives of this study were to construct the modeling site for a samll urban watershed with the Storm Water Management Model(SWMM), and to evaluate the effect of various LID techniques on the control of rainfall runoff processes and non-point pollutant load. The model was calibrated and validated using the field data collected during two flood events on July 17 and August 11, 2009, respectively, and applied to a complex area, where is consist of apartments, school, roads, park, etc. The LID techniques applied to the impervious area were decentralized rainwater management measures such as pervious cover and green roof. The results showed that the increase of perviousness land cover through LID applications decreases the runoff volume and pollutants loading during flood events. In particular, applications of pervious pavement for parking lots and sidewalk, green roof, and their combinations reduced the total volume of runoff by 15~61 % and non-point pollutant loads by TSS 22~72 %, BOD 23~71 %, COD 22~71 %, TN 15~79 %, TP 9~64 % in the study site.

Identification of soil Remedial Goal due to Arsenic in Soil near Abandoned Mine- Approach to Regarding Future Land Use - (폐광산 지역의 비소오염에 대한 복원목표 설정 - 미래 토지용도를 고려한 접근방법 -)

  • 이효민;윤은경;최시내;박송자;황경엽;조성용;김선태
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.13-29
    • /
    • 1998
  • Recently, It is increasing popularity to research on the soil remediation in aspect of management by reason of the hazardous impact on the contaminated soil in Korea. It was investigated high levels of arsenic salts in soil near abandoned five mines(Darak, Daduk, Jingok, Dalsung, Ilkwang) located in Youngnam area. Arsenic, classified as group A(Human Carcinogens) from IRIS, have shown statistically significant increment in skin cancer with oral exposure. This paper was conducted to predict excess cancer risk value (to the skin cancer) based on multiple pathway such as soil ingestion, dermal uptake and food(plant) ingestion contaminated by arsenic, and also, to identify the remedial goal regarded in future land use. The mine having the highest arsenic level was Daduk(mean : 1950mg/kg) and the next rank was Jingok(1690mg/kg), Ilkwang(352.37mg/kg), Dalsung(86.08mg/kg), Darak(0.83mg/kg). The chronic daily intake to the multiple exposure were calculated using Monte-Carlo simulation regarded in future land use and used q: value was $1.5(mg/kg/day)^{-1}$ to the oral proposed by IRIS(1997). The computated excess cancer risk 95th value to all the mine regarding future land use as residential and rural area were more than $10^{-4}$. If the level of acceptable risk is aimed for 1$\times$$10^{-6}$, it could be used Darak as commercial and industrial area without soil remediation due to the lowest risk value(6$\times$$10^{-8}$ and 3$\times$$10^{-8}$). Computated remedial goal based on 1$\times$$10^{-6}$ of acceptable risk to the future land use as the residential, rural, commercial and industrial area were 0.02mg/kg, 0.003mg/kg, 97.31mg/kg and 194.62mg/kg, respectively.

  • PDF

Biodegradation of Phenol by Comamonas testosteroni DWB-1-8 Isolated from the Activated Sludge of Textile Wastewater (섬유 폐수 활성 슬러지에서 분리한 Comamonas testosteroni의 생물학적 페놀 분해)

  • Kwon, Hae Jun;Choi, Doo Ho;Kim, Mi Gyeong;Kim, Dong-Hyun;Kim, Young Guk;Yoon, Hyeokjun;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.156-161
    • /
    • 2020
  • Since industrialization, the production and utilization of various chemicals has contributed to improving the quality of our lives, but the subsequent discharge of massive waste is inevitable, and environmental pollution is becoming more serious every day. Exposure to chemicals as a result of environmental pollution is having a negative effect on human health and the ecosystem, and cleaning up the polluted environment that can affect our lives is a very important issue. Toxic aromatic compounds have been detected frequently in soil, groundwater, and wastewater because of the extensive use of oil products, and phenol, which is used to produce synthetic resins, textiles, and dyes, is one of the major pollutants, along with insecticides and preservatives. Phenol can cause dyspnea, headache, vomiting, mutation, and carcinogenesis. Phenol-degrading bacterium DWB-1-8 was isolated from the activated sludge of textile wastewater; this strain was identified as Comamonas testosteroni by 16S rRNA gene sequencing. The optimal culture conditions for the cell growth and degradation of phenol were 0.7% K2HPO4, 0.6% NaH2PO4, 0.1% NH4NO3, 0.015% MgSO4·7H2O, 0.001% FeSO4·7H2O, an initial pH of 7, and a temperature of 30℃. The strain was also able to grow by using other toxic compounds, such as benzene, toluene, or xylene (BTX), as the sole source of carbon.

Vertical Distribution of Heavy Metal Concentrations in Sediment Cores and Sedimentation Rate Using $^{210}Pb$ Dating Technique in the Juam Reservoir (주암댐 호저 퇴적물에서의 수직적 중금속 분산과 $^{210}Pb$를 이용한 퇴적속도산정)

  • Lee Pyeong-Koo;Youm Seung-Jun;Yeon Gyu Hun;Chi Se-Jung;Kim Ji-Wook;Oh Chang-Whan;Kim Sun-Ok
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.43-57
    • /
    • 2005
  • Twelve bottom sediments and three cores were collected in Juam reservoir for a study on transportation, which was controlled by particle grain size (2mm-200{\mu}m,\;200-100{\mu}m,\;100-50{\mu}m,\;50-20{\mu}m,\;<20{\mu}m), and vertical distribution of heavy metals. Sediment cores were sliced into 2 to 5 cm intervals to measure heavy metal concentrations in interstitial water and sediments with depth. Pb isotopic compositions of core samples were determined to calculate sedimentation rate. Regardless of sampling sites, levels of heavy metals and trace elements in bottom sediments are nearly constant with mean values of $14.9\;{\mu}g/g\;for\;As,\;0.81{\mu}g/g\;for\;Cd,\;30.7{\mu}g/g\;for\;Cu,\;34.7{\mu}g/g\;for\;Ni,\;63.3{\mu}g/g\;for\;Pb\;and\;87.9{\mu}g/g\;for\;Zn$. In general, Cu, Pb, Zn, Wi, and Cr in fraction of $<20{\mu}m$ exhibit the highest concentration, but content of As is the highest in grain size of $2\;mm-200\;{\mu}m$ and $200-100\;{\mu}m$. Fe and Mn occur as the dissolved compositions of the highest concentrations in interstitial waters and increase in their concentrations toward lower part of cores. On the contrary, concentrations of Zn and Cu show the highest value in the uppermost part in cores, suggesting these elements are released from reductive dissolution of hydroxides and oxidation of organic matters under different redox conditions. The highest accumulations of Cu, Ni, Pb, and Zn contents in the sediment cores are observed at 0-4 cm layers, and concentrations of Cu and Pb are especially high, implying these heavy metals are originated from anthropogenic sources. The apparent sedimentation rate estimated using unsupported $^{210}Pb$ is 0.91 cm $year^{-1}$, corresponding about 10 cm sedimentation in total depth since construction of Juam dam. These results will provide available information for management of bottom sediment in Juam reservoir.