• Title/Summary/Keyword: 오염물질 확산예측

Search Result 125, Processing Time 0.027 seconds

The Behavior of Leachate on The Transient Condition in The Nanji Waste Landfill (부정류 상태에서의 난지도 매립지 침출수 거동 예측)

  • 강동희;조원철;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.57-67
    • /
    • 2001
  • The purpose of this study is to predict appropriate leachate rates and leachate transport velocity through weathered zone and basement rock on the transient condition at Nanji waste landfill. The leachate transport in the Nanji waste landfill is analyzed using MODFLOW(A Modular 3-D Finite Different Groundwater Flow Model) model which simulates three dimension groundwater flow and MT3D(A Modular Three Dimentional Transport Model) model which describes three dimensional transport for advection, dispersion and chemical reaction of dissolved constituents in groundwater system on the transient condition. Leachate production rates are estimated by HELP(Hydraulical Evaluation of Landfill Performance) model and used weather records for recent 10 years. Leachate transport is predicted by a change of leachate level to after/before established HDPE, established slurry wall and wells.

  • PDF

ILLUDAS-NPS Model for Water Quality in Urban drainage (도시유역의 수질해석을 위한 ILLUDAS-NPS 모형)

  • Kim Tae-Hwa;Lee Jong-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.482-486
    • /
    • 2005
  • 불투수지역의 증가에 따른 도시지역의 비점오염원 해석 및 예측은 수자원 관리측면에서 중요성이 증가하고 있다. 그러나, 실측자료의 부족, 오염물질 발생경로의 불명확, 간헐성, 강우 및 유역특성에 따라 오염부하량 및 첨두농도 등의 변화가 심하므로 인하여 연구에 어려움이 많은 실정이다. 이를 극복하기 위해서는 장기적인 자료수집과 국내실정에 맞는 모형개발이 이루어져야 할 것이다. 따라서, 본 연구에서는 초기강우에 의한 수질항목별 오염부하량 및 농도계산이 가능한 ILLUDAS-NPS 모형을 개발하였다. 본 모형은 국내의 도시지역 유출해석에 주로 사용되는 ILLUDAS 모형에 건기 및 우기시의 수질해석 과정들을 추가하여 해석되어 진다. 건기시의 경우 유량 및 수질 계산은 계수지정법을 사용하였으며, 우기시의 경우 유량계산은 기존 ILLUDAS 모형의 알고리즘을 이용하였고, 수질 계산은 일일 오염물 축적법과 쓸림방정식을 적용하여 계산시간별 오염물질 부하량 및 농도 등을 계산하였다. 모형의 검정을 위하여 홍제천 시험유역의 총 3가지 강우사상을 대상으로 검토한 결과 총부하량, 첨두농도, 첨두농도 발생시간 등에서 전반적으로 실측치와 유사한 결과를 얻을 수 있었다. 또한, ILLUDAS-NPS 모형과 SWMM, STORM 등의 기존 도시유출$\cdot$수질 모형들에 의한 결과들의 비교에서 SWMM 모형과 다소의 차이는 있으나 대부분 잘 일치함을 확인할 수 있었다. 추후, 합리적이고 보다 정확한 비점오염 해석을 위하여 도시지역의 건거시 오염물질의 축적율 및 초기강우에 의한 오염물질 쓸림량 등에 관한 실험 및 현장자료 축적이 필요하다.월이 긴 것으로 나타났다. 이러한 현상은 유입수가 저수지로 유입되면서 초기수위가 높은 경우에 운동량이 상대적으로 많이 소멸되기 때문으로 판단된다. 또한 탁수층의 두께도 8월 성층의 경우가 상대적으로 큰 것으로 나타났다. 이는 중층의 8월 수온분포 또는 밀도분포가 상대적으로 균일하기 때문에 연직방향 이송$\cdot$확산이 많이 이루어졌기 때문으로 판단된다.이는 토성간의 침투속도 및 투수속도의 경향이 반영된 것이다. 경사에 따라서는 경사도가 증가할수록 지수적으로 감소하였으며 $10\% 경사일 때를 기준으로 $I(mm)=I_{10}{\times}1.17{\times}e^{-0.0164s(\%)}$로 나타났다. 같은 조건에서 강우량과 유거수의 관계는 $Ro_{10}(mm)=5.32e^{0.11R(mm)}(r^2=0.69)$로 나타났다. 이는 토양의 투수특성에 따라 강우량 증가에 비례하여 점증하는 침투수와 구분되는 현상이었다. 경사와 토양이 같은 조건에서 나지의 경우 역시 $Ro_{B10}(mm)=20.3e^{0.08R(mm)(r^2=0.84)$로 지수적으로 증가하는 경향을 나타내었다. 유거수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 0.86으로 가장 작았고, 식양토 1.09, 식토 1.15로 평가되어 침투수에 비해 토성별 차이가 크게 나타났다. 이는 토성이 세립질일 수록 유거수의 저항이 작기 때문으로 생각된다. 경사에 따라서는 경사도가 증가할수록 증가하였으며 $10\% 경사일 때를 기준으로 $Ro(mm)=Ro_{10

  • PDF

Development of tracer concentration analysis method using drone-based spatio-temporal hyperspectral image and RGB image (드론기반 시공간 초분광영상 및 RGB영상을 활용한 추적자 농도분석 기법 개발)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun;Han, Eunjin;Kwon, Siyoon;Kim, Youngdo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.623-634
    • /
    • 2022
  • Due to river maintenance projects such as the creation of hydrophilic areas around rivers and the Four Rivers Project, the flow characteristics of rivers are continuously changing, and the risk of water quality accidents due to the inflow of various pollutants is increasing. In the event of a water quality accident, it is necessary to minimize the effect on the downstream side by predicting the concentration and arrival time of pollutants in consideration of the flow characteristics of the river. In order to track the behavior of these pollutants, it is necessary to calculate the diffusion coefficient and dispersion coefficient for each section of the river. Among them, the dispersion coefficient is used to analyze the diffusion range of soluble pollutants. Existing experimental research cases for tracking the behavior of pollutants require a lot of manpower and cost, and it is difficult to obtain spatially high-resolution data due to limited equipment operation. Recently, research on tracking contaminants using RGB drones has been conducted, but RGB images also have a limitation in that spectral information is limitedly collected. In this study, to supplement the limitations of existing studies, a hyperspectral sensor was mounted on a remote sensing platform using a drone to collect temporally and spatially higher-resolution data than conventional contact measurement. Using the collected spatio-temporal hyperspectral images, the tracer concentration was calculated and the transverse dispersion coefficient was derived. It is expected that by overcoming the limitations of the drone platform through future research and upgrading the dispersion coefficient calculation technology, it will be possible to detect various pollutants leaking into the water system, and to detect changes in various water quality items and river factors.

Diffusive Estimation of the Conservative Contaminant in River Estuary (하구의 보존성 오염물질 확산 예측)

  • Yoon, Jong-Su;Shin, Chan-Ki;Hwang, Dong-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.3
    • /
    • pp.47-57
    • /
    • 2008
  • This study was predicted the diffusion of the conservative contaminant using a two-dimensional hydraulic model. The research area is upper basin of Jakwang river where the possibility where the pollutant of vast quantity will flow is high. Using SMS model, we calculated two-dimensional stream flow. And using this result, predicted the conduct of the conservative contaminant by pollutant transfer diffusion calculation. And also we predicted flow and contaminant diffusion in the near estuary by constructed guide bank. As a result of study, pollutant effect scope of the conservative contaminant was predicted with the fact that will broaden because of interception by guide bank. As discharge was increased from the Jakwang river, The diffusion of the pollutant is accelerated, also the effect scope increases.

Prediction of Pollutant Transport using by Eulerian-lagrangian (Eulerian-Lagrangian Analysis(ELA) 모형을 이용한 오염물질이동 예측)

  • 최병옥;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.128-140
    • /
    • 1994
  • Coastal areas, especially embayments are apt to be polluted easily and many embayments in Korea are already suffering from pollution problems. To manage such pollution, it is strongly needed to develop technique to trace movements of pollution. Such technique cove- ring the embayment affected by the tidal influence, should take account both of the convection and the diffusion motions which cause lots of problems in numerical calculation. In this study, a Eulerian-Lagrangian Analysis(ELA) model was applied to Young Il bay and tested for its applicablity, which was developed by using the Eulerian-Lagrangian Method that reduce the numerical disperison and oscillation by way of solving convection and diffusion terrns separately. Concentration of Chemical Oxygen Demand(COD) and Suspend Solid(SS) of the embay- ment area were estimated by the model and compared with the observed values and the sound results were obtained. At the same time the diffsion coefficient and decay coefficient for Chemical Oxygen Demand in the Young II Bay were found as Dx = Dy = 20m$^2$/sec, kd=2.5 ${\times}$ 10-5/sec respectively, and for Suspend Solid, Dx =Dy = 30m$^2$/sec, kd=5.0${\times}$ 10-5/sec

  • PDF

Health and environmental risk assesment of air pollutants in Gyeongju and its vicinities(I) (경주 주변지역 대기오염물질의 보건.환경 위해성 평가(I))

  • Jung, Jong-Hyeon;Choi, Won-Joon;Leem, Heon-Ho;Park, Tong-So;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3740-3747
    • /
    • 2009
  • To protect the citizens' health of Gyeongju and to secure basic data for the assessment of health and environmental risk, distribution characteristics of meteorological elements were investigated and numerical simulation of wind field using RAMS model was carried out. In addition, measurement and analysis of air pollutants, forecasting the behavior air pollutants using ISC-AEROMOD view, and health and environmental risk-influenced zones were defined through managing air polluting materials to prevent health damage and property damage. According to the survey results of air pollution in Gyeongju and surroundings, average annual concentration of air pollutants in Gyeongju was slightly lower than that in Pohang and Ulsan areas, but concentration of particulate matters and nitrogen dioxide at Gyeongju Station Square and Yonggang Crossing were sometimes higher than that in Pohang and Ulsan areas. Results of the modeling of moving and diffusion of air pollutants that affect citizens' health showed that parts of the 1st through 4th industrial complexes together with POSCO were included in particulate matters and sulfur dioxide influenced areas in Pohang Steel Complex area, and that Haedo-dong, Sangdae-dong, Jecheol-dong and Jangheung-dong in Pohangnam-gu represented locally worsened air quality due to a quantity of air pollutant emission from dense steel industries and large scale industrial facilities.

The Characteristics and the Effects of Pollutant Loadings from Nonpoint Sources on Water Quality in Suyeong Bay (수영만 수질에 미치는 비점원 오염부하의 특성과 영향)

  • CHO Eun Il;LEE Suk Mo;PARK Chung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.3
    • /
    • pp.279-293
    • /
    • 1995
  • The most obvious and easily recognizable sources of potential water pollution are point sources such as domestic and industrial wastes. But recently, the potential effects of nonpoint sources on water quality have been increased apparently. In order to evaluate the characteristics and the effects of nonpoint sources on water quality, this study was performed in Suyeong Bay from May, 1992 to July, 1992. The depth-averaged 2-dimensional numerical model, which consists of the hydrodynamic model and the diffusion model was applied to simulate the water quality in Suyeong Bay. When flowrate was $65.736m^3/s,$ the concentration of pollutants (COD, TSS and VSS) at Oncheon stream (Sebeong bridge) during second flush were very high as much as 121.4mg/l of COD, 1148.0mg/l of TSS and 262.0mg/1 of VSS. When flowrate was 4.686m^3/s, the concentration of pollutants $(TIN,\;NH_4\;^+-\;N,\;NO_2\;^--N\;and\;PO_4\;^{3-}-P)$ during the first flush were very high as much as 20.306mg/1 of TIN, 14.154mg/1 of $NH_4\;^+-N$, 9.571mg/l of $NO_2\;^--N$ and l.785mg/l of $PO_2\;^{3-}-P$ As results of the hydrodynamic model simulation, the computed maximum velocity of tidal currents in Suyeong Bay was 0.3m/s and their direction was clockwise flow for ebb tide and counter clockwise flow for Hood tide. Four different methods were applied for the diffusion simulation in Suyeong Bay. There were the effects for the water quality due to point loads, annual nonpoint loads and nonpoint loads during the wet weather and the investigation period, respectively. The efforts of annual nonpoint loads and nonpoint loads during the wet weather seem to be slightly deteriorated in comparison with the effects of point loads. However, the bay was significantly polluted by the nonpoint loads during the investigation period. In this case, COD and SS concentrations ranged 2.0-30.0mg/l, 7.0- 200.0mg/l in ebb tide, respectively. From these results, it can be emphasized that the large amount of pollutants caused by nonpoint sources during the wet weather were discharged into the bay, and affected significantly to both the water quality and the marine ecosystem. Therefore, it is necessary to consider the loadings of nonpoint pollutants to plan wastewater treatment plant.

  • PDF

Health Impact Assessment on Construction of Landfill Site - Focused on Human Risk Assessment due to Inhalation Exposure to Landfill Gas - (매립장 조성사업에 대한 건강영향평가 - 매립가스의 호흡노출로 인한 인체위해성평가를 중심으로 -)

  • Kim, Young-Ha;Lee, Young-Soo
    • Journal of Environmental Policy
    • /
    • v.7 no.1
    • /
    • pp.1-29
    • /
    • 2008
  • The Ministry of Environment(MoE) of Korea has recently established the Environmental Health Act. This Act contains a clause related to implementation of Health Impact Assessment(HIA). So, selecting a landfill which was expected to have an influence on human health among major development projects, this study carried out the human risk assessment due to inhalation exposure to landfill gas emission and attempted to measure the possibility of domestic application of HIA in the future. The process for HIA on landfill site extension focusing on human risk assessment is as follows: The first step is to presume and calculate the amount of landfill gas emissions using LandGEM, The second step is to carry out exposure assessment using K-SCREEN Model which is used for predicting the concentration in a conservative method. The last step is to carry out human risk assessment of carcinogenic and non-carcinogenic substances. It is considered that it is likely to apply a technique for human risk assessment due to inhalation exposure to landfill gas emission performed here more specifically in the case of implementing HIA. In addition, it is also believed that more systematic studies are needed to overcome some weak points and limits found in this study and if these weak points and limits are improved more reliable outcomes will be produced.

  • PDF

QSPR analysis for predicting heat of sublimation of organic compounds (유기화합물의 승화열 예측을 위한 QSPR분석)

  • Park, Yu Sun;Lee, Jong Hyuk;Park, Han Woong;Lee, Sung Kwang
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.187-195
    • /
    • 2015
  • The heat of sublimation (HOS) is an essential parameter used to resolve environmental problems in the transfer of organic contaminants to the atmosphere and to assess the risk of toxic chemicals. The experimental measurement of the heat of sublimation is time-consuming, expensive, and complicated. In this study, quantitative structural property relationships (QSPR) were used to develop a simple and predictive model for measuring the heat of sublimation of organic compounds. The population-based forward selection method was applied to select an informative subset of descriptors of learning algorithms, such as by using multiple linear regression (MLR) and the support vector machine (SVM) method. Each individual model and consensus model was evaluated by internal validation using the bootstrap method and y-randomization. The predictions of the performance of the external test set were improved by considering their applicability to the domain. Based on the results of the MLR model, we showed that the heat of sublimation was related to dispersion, H-bond, electrostatic forces, and the dipole-dipole interaction between inter-molecules.

Water Solubilities and Vapor Pressures of Chlorothalonil and Command (농약 Chlorothalonil 과 Command 의 수용성 및 증기압)

  • Kim, Kyun;Kim, Yong-Bae;Kim, Yong-Hwa;Roh, Jung-Koo
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.2
    • /
    • pp.84-93
    • /
    • 1987
  • The water solubilities and vapor pressures of chlorothalonil and Command were measured following the guidelines of the U.S. EPA and OECD. Water solubility of the two compounds is consistent with respective values in the literature. However, the vapor pressures of Chlorothalonil and Command were 5,000 times$(2{\times}10^{-7}\;torr\;at\;25^{\circ}C)$ and 100 times$(<1{\times}10^{-6}\;torr\;at\;45^{\circ}C)$ lower than the literature values, respectively. Courteous use of the vapor pressure values in the handbooks is suggested. With this study, experimental difficulties involved were recognized. Based on the low vapor pressure of Command, the cause of the accidental bleach of non-target plants in the United States might not be attributed to the volatilization of Command, but to the drift during the application of the herbicide. These approaches will be utilized to predict the environmental fate of new chemicals under development, to screen the potential environmental pollutants among chemicals already in use, and to assess measures to minimize the hazards.

  • PDF