• Title/Summary/Keyword: 오염물질

Search Result 6,002, Processing Time 0.043 seconds

Unit Loadings of Heavy Metals by Non-point Sources - Case Study in a Valley Watershed - (비점원에 의한 중금속 원단위 부하량 - 곡간지 유역을 중심으로 -)

  • Kim, Jin-Ho;Han, Kuk-Heon;Lee, Jong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • The study was carried out to estimate runoff loads of heavy metals in the valley watershed at the middle of South Korea, during farming season. There were no other pollution sources except agricultural activity. From 27 April 2006 to 31 October 2007, water samples were collected using two methods. The first method was regular sampling wherein water samples were taken every two weeks; and the other method was through regular sampling when water were collected during each rainfall event. Results showed that heavy metals were found in the water from the regular samples, and were highest during May and June. It was presumed that this might have been contributed by farming activities. Heavy metal concentration of the irregular samples was lower than regular samples. The correlation coefficient between each heavy metal of the regular samples were as follows: Fe-Al>Cr-Al>Fe-Cr>Mn-Fe. The correlation coefficient of the irregular samples were the following: Fe-Al>Fe-Cu is positive; and Pb-Cu>Ni-Al is negative. Measured pollutant loads of heavy metals in the valley watershed were : 2.047 kg $day^{-1}$ of Al, 0.008 kg $day^{-1}$ of Cd, 0.034 kg $day^{-1}$ of Cr, 0.311 kg $day^{-1}$ of Cu, 0.601 kg $day^{-1}$ of Fe, and 0.282 kg $day^{-1}$ of Zn in 2006; while in 2007, the following were observed: 2.535 kg $day^{-1}$ of Al, 0.026 kg $day^{-1}$ of Cd, 0.055 kg $day^{-1}$ of Cu, 0.727 kg $day^{-1}$ of Fe, and 0.317 kg $day^{-1}$ of Zn. In the analysis of data gathered, the loading rates of effluents from the valley watershed during the rainy season were : 79.8% of Al, 69.1% of Cu, 82.5% of Fe, and 69.1% of Zn in 2006; while 69.9% of Al, 67.5% of Cu, 70.4% of Fe, and 67.5% of Zn in 2007.

Deterioration Characteristic Analysis for Stone Properties in the Taereung Royal Tomb of the Joseon Dynasty using Nondestructive Analysis (비파괴 분석을 활용한 조선왕릉 태릉 석조물의 손상특성 분석)

  • Lee, Myeonseong;Choie, Myoungju;Lee, Taejong;Chun, Yungun
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.222-241
    • /
    • 2020
  • The Taereung Royal Tomb from the Joseon Dynasty is the tomb of Empress Munjeong, the second queen of King Jungjong, and it contains various types of stone artifacts. All of these stone artifacts were constructed using coarse- to medium-grained biotite granite. The major types of deterioration of the stone artifacts are identified as surface weathering and biological contaminants. Exfoliation (145 sculptures), granular decomposition (138 sculptures), and repair materials (156 sculptures), along with biological contaminant algae (154 sculptures), lichen (165 sculptures) and moss (97 sculptures), have a high occurrence frequency. In particular, it is deemed that immediate conservation treatment is required, as biological deterioration (algae) represents the most serious condition (grade 3 or higher in 94% of all stones), and it is thought that exfoliation and granulation decomposition are required for long-term conservation management. As a result of equo -tip hardness and ultrasonic measurement, more than 70% of stones were found to have very weak physical properties. Through hyperspectral analysis, organisms were shown to inhabit more than 80% of the surface of burial mound stone artifacts, and P (phosphorus), S (sulfur), Cl (chlorine), and Ca (calcium) were detected in this area. This is because Taereung Royal Tomb has been exposed to the outdoors for hundreds of years and has been weathered by physical, chemical, and biological factors. Therefore, among the stone artifacts in the Taereung Royal Tomb, those with high physical weathering grades are considered to require consolidation to reinforce them physically. Since organisms are highly likely to cause stone damage, they must be removed via dry and wet cleaning. In addition, in order to delay the reoccurrence of organisms following conservation treatment, it is necessary to regularly clean up the soil that has flowed into the burial mound, and to monitor conservation conditions over the long term.

Quantity and Characteristics of Manure Produced by Holstein Heifer at Different Seasons (홀스타인 육성우의 계절별 분뇨 배설량 및 특성에 관한 연구)

  • Choi, D.Y.;Kwag, J.H.;Park, C.H.;Jeong, K.H.;Kim, T.I.;Kim, J.H.;Yoo, Y.H.;Yang, C.B.;Hong, H.L.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.3
    • /
    • pp.123-132
    • /
    • 2006
  • This study was conducted to determine the volume of Holstein heifers manure excreted and its characteristics. The average dry matter intake of heifers was 6.7 kg/head/day. The intake rate was lowest in spring among four seasons. The average dry matter intake rate during spring, summer, fall, and winter was 4.6, 8.3, 7.1, and 6.8 kg/head/day, respectively. The average water intake of heifers was $19.3{\ell}/head/day$. The wale. consumption was highest value ($21.8{\ell}/head/day$) in summer and lowest values ($18.3{\ell}/head/day$) in spring and winter. Values were found not to be statiscally different for the four seasons. The average manure production of heifers (average live weight was 363.1 kg) was 20.3 kg/head/day and it was 5.6% of live animal weight. The manure production during spring, summer, fall, and winter was 13.7, 23.5, 25.0, and 20.2 kg/head/day, respectively. Production during spring was lower than the other seasons (p<0.05). A higher correlation between live weight and manure production ($R^2=0.7816$) and between live weight and feed intake ($R^2=0.7296$) was observed for heifers. Correlations between manure production and water intake and between manure production and feed intake were found to be relatively low for heifers. The moisture content of feces was 83.5% and that of urine 94.6%. The pH of feces and urine were in the ranges of 7.4 and 7.5, respectively. The $BOD_5$, COD, SS, T-N, T-P concentrations of the heifer feces were 18,048, 50,114, 119,833, 2,519, and $427mg/{\ell}$, respectively. Heifer urine showed lower levels of $BOD_5(5,434mg/{\ell})$, COD$(6,550mg/{\ell})$, SS$(825mg/{\ell})$, T-N$(3,616mg/{\ell})$, and $T-P(28mg/{\ell})$ than feces. The fertilizer nutrient concentrations of heifer feces was 0.25% N, 0.1% $P_2O_5$ and 0.14% $K_2O$. Urine was found to contain 0.36% N, 0.006% of $P_2O_5$ and 0.31% $K_2O$.

  • PDF

The Study to Re-establish the Amount and Major Compositions of Slurry From Seasonal Swine Farms (슬러리 돈사에서의 슬러리 발생량 및 주요성분 재설정 연구)

  • Kwag, J.H.;Choi, D.Y.;Kim, J.H.;Jeong, K.H.;Park, C.H.;Jeong, M.S.;Han, M.S.;Kang, H.S.;Ra, C.S.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.2
    • /
    • pp.147-154
    • /
    • 2009
  • The purpose of this study was to determine the effect of re-establish the amount and major compositions of slurry from swine farms. The results obtained in this study was summarized as follow; The quantity of wastewater produced from the average volume of pig slurry was $4.64{\ell}$ /head/day and $4.68{\ell}$ in spring, $4.70{\ell}$ in summer, $4.70{\ell}$ in autumn, and $4.49{\ell}$ in winter. The average moisture content of slurry was 95.5%. And the composition of pig slurry contents of N, $P_2O_5$ and $K_2O$, were 0.27, 0.20 and 0.17% in slurry, respectively. The water pollutant concentration in slurry of swine farms, $BOD_5,\;COD_{MN}$, SS, T-N and T-P, was $21,856mg/{\ell},\;33,883mg/{\ell},\;41,253mg/{\ell},\;2,869mg/{\ell}$ and $565mg/{\ell}$, respectively.

  • PDF

A Study on the Improvement of Treatment Efficiency for Nitrogen and Phosphorus in Livestock Treatment System Using Constructed Wetlands (인공습지 축산폐수처리시스템에서 질소 및 인 처리효율 향상 방안)

  • Seo, Dong-Cheol;Park, Jong-Hwan;Kim, Ah-Reum;Kim, Sung-Hun;Lee, Seong-Tea;Jeong, Tae-Uk;Choi, Jeong-Ho;Lee, Sang-Won;Kim, Hyun-Ook;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.434-441
    • /
    • 2011
  • To improve T-N and T-P removal efficiencies, removal efficiencies of pollutants in full-scale livestock wastewater treatment plant by natural purification method with water plant filtration and activated sludge beds were investigated under different re-injection rates and injection methods of livestock wastewater. The removal rates of COD, SS, T-N, and T-P in effluent in full-scale livestock wastewater treatment plant were in the order of 30% < 70% ${\leq}$ 100 % at different re-injection rates. The removal rates of pollutants in effluent in full-scale livestock wastewater treatment plant were higher as re-injection rate of livestock wastewater increased. Removal rates of COD, SS, T-N, and T-P by continuous injection were slightly higher than those by intermittent injection method in full-scale livestock wastewater treatment plant. Removal rates of COD, SS, T-N, and T-P by continuous injection method in full-scale livestock wastewater treatment plant with water plant filtration and activated sludge beds were 99.5, 99.8, 99.0 and 99.8%, respectively.

Study on the Selecting of Suitable Sites for Integrated Riparian Eco-belts Connecting Dam Floodplains and Riparian Zone - Case Study of Daecheong Reservoir in Geum-river Basin - (댐 홍수터와 수변구역을 연계한 통합형 수변생태벨트 적지 선정방안 연구 - 금강 수계 대청호 사례 연구 -)

  • Bahn, Gwonsoo;Cho, Myeonghyeon;Kang, Jeonkyeong;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.327-341
    • /
    • 2021
  • The riparian eco-belt is an efficient technique that can reduce non-point pollution sources in the basin and improve ecological connectivity and health. In Korea, a legal system for the construction and management of riparian eco-belts is in operation. However, it is currently excluded that rivers and floodplains in dam reservoir that are advantageous for buffer functions such as control of non-point pollutants and ecological habitats. Accordingly, this study presented and analyzed a plan to select a site for an integrated riparian ecol-belt that comprehensively evaluates the water quality and ecosystem characteristics of each dam floodplain and riparian zone for the Daecheong Dam basin in Geum River watershed. First, the Daecheong Dam basin was divided into 138 sub-basin with GIS, and the riparian zone adjacent to the dam floodplain was analyzed. Sixteen evaluation factors related to the ecosystem and water quality impact that affect the selection of integrated riparian eco-belt were decided, and weights for the importance of each factor were set through AHP analysis. The priority of site suitability was derived by conducting an integrated evaluation by applying weights to sub-basin by floodplains and riparian zone factors. In order to determine whether the sites derived through GIS site analysis are sutiable for actual implementation, five sites were inspected according to three factors: land use, pollution sources, and ecological connectivity. As a result, it was confirmed that all sites were appropriate to apply integrated riparian ecol-belt. It is judged that the riparian eco-belt site analysis technique proposed through this study can be applied as a useful tool when establishing an integrated riparian zone management policy in the future. However, it might be necessary to experiment various evaluation factors and weights for each item according to the characteristics and issues of each dam. Additional research need to be conducted on elaborated conservation and restoration strategies considering the Green-Blue Network aspect, evaluation of ecosystem services, and interconnection between related laws and policy and its improvements.

Evaluation of the Color-change and Stability of Hoecheong (Smalt) Pigments When Exposed to Airborne Environmental Pollutants (회청 안료의 보존 환경에 따른 안정성 평가)

  • PARK, Juhyun;LEE, Sunmyung;KIM, Myoungnam
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.4
    • /
    • pp.22-35
    • /
    • 2021
  • Recently, as the climate changes rapidly and the prevalence of airborne fine particulate matter increases, the pattern of pollutants in the atmospheric environment is also changing. Therefore, the importance of studying the stability of pigments used in colored cultural properties is emerging. Hoecheong is an inorganic blue glass pigment called smalt; it is made by using cobalt as a coloring element in potash glass, and was widely used in colored cultural assets, such as murals and paintings. In this study, we collected three other hoecheong pigments to analyze their properties. The percentage of Co and K contained are different according to the manufacturer, and the smalt-3 sample has a lower cobalt content (15.1 wt.%) and higher potassium content (29.6 wt.%). After this analysis, colored specimens were prepared. Prepared specimens were exposed to ultra-violet rays, CO2/NO2, and NaCl, which are known to have the greatest influence on the stability of pigments. We found that factors affecting the color stability were NO2 gas, ultra-violet rays, and water-soluble salts (NaCl). Among them, NO2 has the most severe impact on color change of the pigments. Results of the component analysis showed that the color change depends on the potassium and cobalt content of the hoecheong pigment. Among the specimens, smalt-3 showed the most vulnerability after exposure to NO2 gas and water-soluble salts. Pigment film stability is affected by watersoluble salts, giving rise not only to color change, but also weakening the physical properties of the film. However, there was no significant change in composition and color after exposure to CO2 gas. In conclusion, we found that hoecheong pigments underwent color change and increased instability of the coating film when exposed to any of the atmospheric environmental factors used in this study, except for CO2.

Study of major issues and trends facing ports, using big data news: From 1991 to 2020 (뉴스 빅데이터를 활용한 항만이슈 변화연구 : 1991~2020)

  • Yoon, Hee-Young
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.159-178
    • /
    • 2021
  • This study analyzed issues and trends related to ports with 86,611 news articles for the 30 years from 1991 to 2020, using BIGKinds, a big data news analysis service. The analysis was based on keyword analysis, word cloud, relationship diagram analysis offered by BIG Kinds. Analysis results of issues and trends on ports for the last 30 years are summarized as follows. First, during Phase 1 (1991-2000), individual ports such as Busan, Incheon, and Gwangyang ports tried to strengthen their own competitiveness. During Phase 2 (2001-2010), efforts were made on gaining more professional and specialized port management abilities by establishing the Busan Port Authority in 2004, the Incheon Port Authority in 2005, and the Ulsan Port Authority in 2007. During Phase 3 (2011-2020), the promotion of future-oriented, eco-friendly, and smart ports was major issues. Efforts to reduce particulate matters and pollutants produced from ports were accelerated, and an attempt to build a smart port driven by port automation and digitalization was also intensified. Lastly, in 2020, when the maritime sector was severely hit by the unexpected shock of the COVID-19 pandemic, a microscopic analysis of trends and issues in 2019 and 2020 was made to look into the impact the pandemic on the maritime industry. It was found that shipping and port industries experienced more drastic changes than ever while trying to prepare for a post-pandemic era as well as promoting future-oriented ports. This study made policy suggestions by analyzing port-related news articles and trends, and it is expected that based on the findings of this research, further studies on enhancing the competitiveness of ports and devising a sustainable development strategy will follow through a comparative analysis of port issues of different countries, thereby making further progress toward academic research on ports.

CALPUFF Modeling of Odor/suspended Particulate in the Vicinity of Poultry Farms (축사 주변의 악취 및 부유분진의 CALPUFF 모델링: 계사 중심으로)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.90-104
    • /
    • 2019
  • In this study, CALPUFF modeling was performed, using a real surface and upper air meterological data to predict trustworthy modeling-results. Pollutant-releases from windscreen chambers of enclosed poultry farms, P1 and P2, and from a open poultry farm, P3, and their diffusing behavior were modeled by CALPUFF modeling with volume sources as well as by finally-adjusted CALPUFF modeling where a linear velocity of upward-exit gas averaged with the weight of each directional-emitting area was applied as a model-linear velocity ($u^M_y$) at a stack, with point sources. In addition, based upon the scenario of poultry farm-releasing odor and particulate matter (PM) removal efficiencies of 0, 20, 50 and 80% or their corresponding emission rates of 100, 80, 50 and 20%, respectively, CALPUFF modeling was performed and concentrations of odor and PM were predicted at the region as a discrete receptor where civil complaints had been frequently filed. The predicted concentrations of ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ were compared with those required to meet according to the offensive odor control law or the atmospheric environmental law. Subsequently their required removal efficiencies at poultry farms of P1, P2 and P3 were estimated. As a result, a priori assumption that pollutant concentrations at their discrete receptors are reduced by the same fraction as pollutant concentrations at P1, P2 and P3 as volume source or point source, were controlled and reduced, was proven applicable in this study. In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of P1 compared with those of point source-adopted CALPUFF modeling, were predicted similar each other. However, In case of volume source-adopted CALPUFF modeling, its required removal efficiencies of both ammonia and $PM_{10}$ at not only P2 but also P3 were predicted higher than those of point source-adopted CALPUFF modeling. Nonetheless, the volume source-adopted CALPUFF modeling was preferred as a safe approach to resolve civil complaints. Accordingly, the required degrees of pollution prevention against ammonia, hydrogen sulfide, $PM_{2.5}$ and $PM_{10}$ at P1 and P2, were estimated in a proper manner.

Potential Contamination Sources on Fresh Produce Associated with Food Safety

  • Choi, Jungmin;Lee, Sang In;Rackerby, Bryna;Moppert, Ian;McGorrin, Robert;Ha, Sang-Do;Park, Si Hong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.