• Title/Summary/Keyword: 오염물질

Search Result 6,002, Processing Time 0.038 seconds

Field Applications of Non-powered Downward Water Circulation System to Improve Reservoir Water Quality (저수지 수질개선을 위한 무동력 하향류 수류순환시스템의 현장적용성)

  • Jang, YeoJu;Lim, HyunMan;Jung, JinHong;Park, JaeRho;Kim, WeonJae
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.109-119
    • /
    • 2019
  • Eutrophication has occurred due to the inflow of various water pollutants in many Korean reservoirs with low depth, and algal blooms of surface layer and low oxygenation of deep layer have repeated every year. There are several existing technologies to alleviate the stratification of reservoirs, but it is difficult to apply them in field sites due to the necessity of electric power and low economic efficiency. In this study, a non-powered water circulation system using natural energy of wind and water flow has been developed, and two test-beds constructed in the reservoirs with different conditions and examined its field applicability. Through computational fluid dynamics (CFD) simulation, it has been shown that the water circulation system could induce the downward flow to mitigate the stratification between surface and deep layers, and its influence radius could reach about 30 m. As a result of long-term monitoring of the test-beds, various water quality improvement effects have been observed such as moderation of DO fluctuation by water circulation, reduction of DO supersaturation and prevention of excessive pH rising. In order to improve the applicability of the water circulation system, it is considered necessary to review countermeasures against flood and depth conditions of each reservoir.

Complete genome sequence of Comamonas sp. NLF-7-7 isolated from biofilter of wastewater treatment plant (폐수처리장의 바이오 필터로부터 분리된 Comamonas sp. NLF-7-7 균주의 유전체 염기서열 해독)

  • Kim, Dong-Hyun;Han, Kook-Il;Kwon, Hae Jun;Kim, Mi Gyeong;Kim, Young Guk;Choi, Doo Ho;Lee, Keun Chul;Suh, Min Kuk;Kim, Han Sol;Lee, Jung-Sook;Kim, Jong-Guk
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.309-312
    • /
    • 2019
  • Comamonas sp. NLF-7-7 was isolated from biofilter of wastewater treatment plant. The whole-genome sequence of Comamonas sp. NLF-7-7 was analyzed using the PacBio RS II and Illumina HiSeqXten platform. The genome comprises a 3,333,437 bp chromosome with a G + C content of 68.04%, 3,197 total genes, 9 rRNA genes, and 49 tRNA genes. This genome contained pollutants degradation and floc forming genes such as sulfur oxidization pathway (SoxY, SoxZ, SoxA, and SoxB) and floc forming pathway (EpsG, EpsE, EpsF, EpsG, EpsL, and glycosyltransferase), respectively. The Comamonas sp. NLF-7-7 can be used to the purification of wastewater.

Antifouling Effect of an Ultrasonic System Operating at Different Frequencies (주파수 변동에 따른 초음파방오장비의 파울링제거효과)

  • Bae, Jin-Woo;Park, Guan-Sik;Ru, Myung-Lok;Park, Goun-Ha
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.609-616
    • /
    • 2019
  • When the fouling of a vessel occurs, its resistance at sea increases and there is a corresponding increase in fuel consumption. The maintenance cost of the vessel also increases because it is time-consuming to remove the fouling. To solve this problem and minimize environmental contamination of sea-water, there have been recent developments in anti-fouling paints as self-polishing copolymers that not include toxic elements such as tin. When these conventional techniques are applied to vessels, polishing is promoted during the operation whereby friction or vibration with seawater occurs. This leads to enhanced anti-fouling performance. However, when fouling is intensified such as during an anchorage, there is no flow of seawater and polishing is suppressed. This leads to a deterioration of the performance of anti-fouling. To solve these problems, we developed a system that induces vibration in a vessel during anchorage. As such, the deterioration of polishing due to insuf icient flow of seawater is inhibited. The reliability of the ultrasonic antifouling system was evaluated by calculating its repeatability. The removal efficiency of fouling of the proposed system was qualitatively evaluated using test specimens. The test revealed that the value of the coefficient of variation for the reproducibility of the frequency and amplitude was 0.2 % and 4.0 % on average. The degree of fouling of the specimens was the highest at 73.3 g in the No.5 sepcimen. Moreover, efficiency of fouling removal was 93.2 % on average compared to the specimens without the proposed system.

Development of a Colorimetric Rapid Detection Method for Organophosphorus and Carbamate Pesticides using Gold Nanoparticle Aggregation Principle (금 나노 입자 응집 원리를 이용한 유기인계와 카바메이트계 비색-신속 농약검출법 개발)

  • Kim, Hyo-In;Lee, Jeong-Eun;Kim, Sol-A;Moon, Hyo-Yeong;Cho, Sung-Rae;Shim, Won-Bo
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.269-276
    • /
    • 2019
  • A colorimetric rapid detection method based on acetylcholinesterase (AChE) was developed for the analysis of organophosphorus (OP) and carbamate (CB) pesticides. The AChE catalyzes acetylthiocholine into thiocholine having (-) and (+) charges, and the (+) charge results in gold nanoparticle (GNP) aggregation. The in-activation of AChE by OP and CB has been well known. In order to optimize the colorimetric method, optimal dilution times of commercial serum containing AChE, diameter of GNP, and concentration of acetylthiocholine were tested as a key parameter. The colorimetric detection limits of the method were 7.5 ng/mL for both dimethyl amine and carbofuran pesticides in 60% ethanol. No cross-reaction to other chemicals, such as aflatoxin B1 and ochratoxin A, which can be contaminated with pesticides in agricultural products, was observed. Recoveries from lettuce, sesame leaf, and cabbage lettuce spiked with known concentrations of dimethyl amine and carbofuran were found to be ranged from 83.85 to 133.16%. These results indicated that the colorimetric rapid method based on AChE can be a useful tool for the sensitive, specific, rapid, and accurate detection of OP and CB pesticides in fresh vegetables.

Study of Soil Erosion for Evaluation of Long-term Behavior of Radionuclides Deposited on Land (육상 침적 방사성 핵종의 장기 거동 평가를 위한 토사 침식 연구)

  • Min, Byung-Il;Yang, Byung-Mo;Kim, Jiyoon;Park, Kihyun;Kim, Sora;Lee, Jung Lyul;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) resulted in the deposition of large quantities of radionuclides over parts of eastern Japan. Radioactive contaminants have been observed over a large area including forests, cities, rivers and lakes. Due to the strong adsorption of radioactive cesium by soil particles, radioactive cesium migrates with the eroded soil, follows the surface flow paths, and is delivered downstream of population-rich regions and eventually to coastal areas. In this study, we developed a model to simulate the transport of contaminated sediment in a watershed hydrological system and this model was compared with observation data from eroded soil observation instruments located at the Korea Atomic Energy Research Institute. Two methods were applied to analyze the soil particle size distribution of the collected soil samples, including standardized sieve analysis and image analysis methods. Numerical models were developed to simulate the movement of soil along with actual rainfall considering initial saturation, rainfall infiltration, multilayer and rain splash. In the 2019 study, a numerical model will be used to add rainfall shield effect by trees, evaporation effect and shield effects of surface water. An eroded soil observation instrument has been installed near the Wolsong nuclear power plant since 2018 and observation data are being continuously collected. Based on these observations data, we will develop the numerical model to analyze long-term behavior of radionuclides on land as they move from land to rivers, lakes and coastal areas.

Application of DNA Analysis for Identification of Prey Items on Zooplankton: Selective Treatment Method (기수역 요각류 위내용물 유전자 분석: 소화기관 내외부 유전자의 선택적 처리방법)

  • Chae, Yeon-Ji;Oh, Hye-Ji;Kim, Yong-Jae;Chang, Kwang-Hyeon;Jo, Hyunbin
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.247-256
    • /
    • 2021
  • Understanding the selective feeding behavior of zooplankton on phytoplankton is essential for evaluating the nutrient cycle and energy flow in the food web. Although many studies have been conducted regarding the feeding behaviors of zooplankton through gut content analyses, there are limitations in the visual identification of digested contents using a microscope. DNA techniques have been applied to overcome these limitations since they can detect and amplify small amounts of prey DNA remaining in the gut contents. We designed a method to extract prey DNA from the gut contents of the whole body of the copepod specimen and tested the resolution of DNA identification for the prey phytoplankton. The common brackish species, Sinocalanus tenellus, were collected from Saemangeum Reservoir in different sites and seasons, and gut content DNA was extracted using 2.5% bleach treatment for 2 min for removal of potential contamination sources existing in preserved specimens without dissolution of the body. The sequences of the extracted gut contents were confirmed using BLASTn suite based on the NCBI database. The phytoplankton species detected in the gut showed temporal and spatial differences. Although DNA analysis of small copepod gut contents has been suggested as an effective method to examine the dynamics of primary prey sources at the genus or species level, uncertainties such as misidentification and limitations in the detailed information of the composition still exist.

IoT Utilization for Predicting the Risk of Circulatory System Diseases and Medical Expenses Due to Short-term Carbon Monoxide Exposure (일산화탄소 단기 노출에 따른 순환계통 질환 위험과 진료비용 예측을 위한 IoT 활용 방안)

  • Lee, Sangho;Cho, Kwangmoon
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.7-14
    • /
    • 2020
  • This study analyzed the effect of the number of deaths of circulatory system diseases according to 12-day short-term exposure of carbon monoxide from January 2010 to December 2018, and predicted the future treatment cost of circulatory system diseases according to increased carbon monoxide concentration. Data were extracted from Air Korea of Korea Environment Corporation and Korea Statistical Office, and analyzed using Poisson regression analysis and ARIMA intervention model. For statistical processing, SPSS Ver. 21.0 program was used. The results of the study are as follows. First, as a result of analyzing the relationship between the impact of short-term carbon monoxide exposure on death of circulatory system diseases from the day to the previous 11 days, it was found that the previous 11 days had the highest impact. Second, with the increase in carbon monoxide concentration, the future circulatory system disease treatment cost was estimated at 10,123 billion won in 2019, higher than the observed value of 9,443 billion won at the end of December 2018. In addition, when summarized by month, it can be seen that the cost of treatment for circulatory diseases increases from January to December, reflecting seasonal fluctuations. Through such research, the future for a healthy life for all citizens can be realized by distributing various devices and equipment utilizing IoT to preemptively respond to the increase in air pollutants such as carbon monoxide.

The Effects of Fertilization on Growth Performances and Physiological Characteristics of Liriodendron tulipifera in a Container Nursery System (시비 처리가 백합나무 용기묘의 생장 및 생리적 특성에 미치는 영향)

  • Cho, Min Seok;Lee, Soo Won;Park, Byung Bae;Park, Gwan Su
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.305-313
    • /
    • 2011
  • Fertilization is essential to seedling production in nursery culture, but excessive fertilization can contaminate surface and ground water around the nursery. The objective of this study was to find optimal fertilization practice of container seedling production for reducing soil and water contamination around the nursery without compromising seedling quality. This study was conducted to investigate growth performance, photosynthesis, chlorophyll fluorescence, and chlorophyll contents of Liriodendron tulipifera growing under three different fertilization treatments (Constant rate, Three-stage rate, and Exponential rate fertilization). Root collar diameter, height, and biomass of L. tulipifera were the highest at Constant treatment. Like growth performance, seedling quality index (SQI) were higher at Constant than at other treatments, but not significantly different among treatments. L. tulipifera showed good photosynthetic capacity at all treatments. Photochemical efficiency and chlorophyll contents were significantly lower at Exponential than at other treatments. Therefore, Exponential fertilization which is 50% fertilizer of other treatments would maximize seedling growth and minimize nutrient loss.

Research trends and views for insect-proof food packaging technologies (해충유입 방지를 위한 방충포장기법의 연구 동향 및 전망)

  • Chang, Yoonjee;Na, Ja-hyun;Han, Jaejoon
    • Food Science and Industry
    • /
    • v.50 no.2
    • /
    • pp.2-11
    • /
    • 2017
  • Packaging is the last defensive barrier that protects food products from insect infestation during storage. However, though packaging films are hermetically sealed, insects can still be attracted by strong olfactory cues and penetrate through packaging materials, resulting in contamination. Insect contamination may cause consumers to be repulsed by contaminated food products. Especially, it is well known that stored-product insects cause critical problems in the cereal industry by inducing quantitative and qualitative damages to the grain products. The contaminations are caused by insects' metabolic byproducts and body parts, consequentially caused customer repulsion. Therefore, it is necessary to repel and control insects. However, management systems for storage insects in food industry have been inadequate for many years. Synthetic pesticides has been widely used, but pesticides may accumulate in foods, causing acute and chronic symptoms in consumers. For this reason, there is a growing need for the development of natural insecticides that can replace synthetic pesticides. Thus, various reports about anti-insect packaging materials and strategies to repel insects were introduced in this study. Furthermore, we suggested new strategies to develop an insect-repelling active packaging materials which could be applied in the food packaging industry.

Development of Steam Cleaning Technique to Improve Removal Efficiency of Membrane Fouling Matter in Water Treatment Process Using Ceramic Membrane (정수처리용 세라믹 분리막의 막오염 물질의 제거 효율 향상을 위한 스팀세정 기법 개발)

  • Kang, Joon-Seok;Park, Seo Gyeong;Lee, Jeong Eun;Kang, So Yeon;Lee, Jeong Jun;Quyen, Vo Thi Kim;Kim, Han-Seung
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.99-107
    • /
    • 2018
  • This research has developed a high temperature steam cleaning technology using a ceramic membrane with durability against temperature and pressure conditions. In steam cleaning, steam of $120^{\circ}C$ is injected into the ceramic membrane to induce pyrolysis by the endothermic reaction to remove fouling from the membrane. The water quality of raw water was adjusted to turbidity 10, 25 NTU and DOC 2.5 mg/L, and the membrane was uniformly fouled by constant pressure operation at 100, 200, and 300 kPa. Physical backwashing was performed with water and air at a pressure of 500 kPa and steam at $120^{\circ}C$ was injected for 0 to 5 minutes. As the turbidity concentration and the operating pressure increased, the flux decreased by 0.7 to 14.4%. It is confirmed that 10.7 to 53.8% recovery is possible than physical cleaning at the injection of steam for 3 minutes, so it is considered that the steam cleaning of the ceramic membrane is effective. Compared with CEB after NaOCl (300 mg/L) filtration at 25 NTU and 300 kPa of turbidity, the steam cleaning result for 3 minutes was similar to 46.7% of CEB for 3 hours. It has been confirmed that steam cleaning is suitable for a ceramic membrane having excellent heat resistance against high temperature. It was considered to have better cleaning efficiency as compared with general physical backwashing.