• Title/Summary/Keyword: 오염된 공기

Search Result 885, Processing Time 0.029 seconds

A Numerical Study on Pressure Fluctuation and Air Exchange Volume of Door Opening and Closing Speeds in Negative Pressure Isolation Room (음압격리병실에서의 병실 문의 개폐속도에 따른 실간 압력변동 및 공기교환량에 대한 해석적 연구)

  • Kim, Jun Young;Hong, Jin Kwan
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • Purpose: In this study, through the comparison of the pressure fluctuation and air exchange volume in negative isolation room according to the type of the door and door opening/closing speeds, which is one of the main factors causing the cross contamination of the negative pressure isolation room, establishes standard operating procedures to prevent cross contamination in high risk infectious diseases and isolation room design. Methods: In this study, the air flow each of the room is analyzed using ANASYS CFX CODE for flow analysis. In addition, the grid configuration of the door is constructed by applying Immersed Solid Methods. Results: The pressure fluctuation due to the opening and closing of the hinged door was very large when the moment of the hinged door opened and closed. Especially, at the moment when the door is closed, a pressure reversal phenomenon occurs in which the pressure in the isolation room is larger than the pressure in the anteroom. On the other hand, the pressure fluctuation due to the opening and closing of the sliding door appeared only when the door was closed, but the pressure reversal phenomenon not occurred at the moment when the sliding door was closed, unlike the hinged door. As the opening and closing speed of the hinged door increases, the air exchange volume is increased. However, as the opening and closing speed of the sliding door is decreased, the air exchange volume is increased. Implications: According to the results of this study, it can be concluded that the pressure fluctuation due to the opening and closing of the hinged door is greater than the pressure fluctuation due to the opening and closing of the sliding door. In addition, it can be confirmed that the pressure reversal phenomenon, which may cause to reduce the containment effect in negative pressure isolation room, is caused by the closing of the hinged door. Therefore, it is recommended to install a sliding door to maintain a stable differential pressure in the negative isolation room. Also, as the opening and closing speed of the hinged door is slower and the opening and closing speed of the sliding door is faster, the possibility of cross contamination of the room can be reduced. It is therefore necessary to establish standard operating procedures for negative isolation room for door opening and closing speeds.

Nitrogen and Phosphorus Removal in Long Term Pilot Plant Operation Using Submerged Hollow Fiber Membrane and Ferric Chloride (침지형 중공사막과 철염을 이용한 Pilot MBR 공정의 장기운전에 따른 질소, 인 제거 특성)

  • Cheong, Jin-Ho;Heo, Yong-Rok;Im, Jeong-Dae;Lee, Eui-Sin;Park, Myung-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1168-1173
    • /
    • 2005
  • Pilot scale vertical-type membrane bioreactor was operated to examine the effect of $FeCl_3$ injection on the removal of organics, nitrogen and phosphorous, and additionally trans-membrane pressure (TMP) was observed. The membrane type was hollow fiber membrane with pore size of $0.25\;{\mu}m$, and the material was polytetrafluoroethylene (PTFE). The membrane permeate was continuously removed by a pump under a constant flux ($25\;L/m^2/h$). Air back-flushing technique were adopted to reduce fouling. As a result, TMP was increased more slowly than that of the operation without air back-flushing, During long-term operation, approximately 310 days, the injection of $FeCl_3$ was effective not only in removing phosphorous chemically but also in reducing TMP increase. Furthermore, while the average COD and T-N concentration of the effluent without $FeCl_3$ injection was 14.3 mg/L and 6.0 mg/L respectively, that of effluent with $FeCl_3$ was 11.3 mg/L and 6.0 mg/L respectively, which confirmed the effects of $FeCl_3$.

Optimization of Operation and Backwashing Condition for an Upflow Stormwater Filtration System Utilizing Ceramic Media (세라믹 여재를 활용한 상향류식 여과형 비점오염저감시설의 최적 운전 및 역세척 조건)

  • Hwang, Yuhoon;Seo, Younggyo;Kim, Hyowon;Roh, Kunwan;Shin, Hyunsang;Kim, Dogun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.478-488
    • /
    • 2017
  • Stormwater filtration is widely used for the urban runoff treatment. However, intensive maintenance and lack of information about the performance have resulted in an increased need of proper evaluation. In this study, the performance of an upflow stormwater runoff filtration system, consisting of a supporting unit and a filtration unit filled with a ceramic media, was investigated. The maximum head loss increase was about 3 cm under the suspended solid (SS) load of $30kg/m^2$ and the SS removal was more than 96%, when the filtration velocity was 20-40 m/h. The head loss and the porosity of the media can successfully be described by a power model. It was confirmed that the a significant amount of SS can effectively be removed at supporting unit, minimizing SS load to the filter media bed. Several backwashing strategies have been tested to establish the optimum condition. It was found that the stagnant water discharge is important to minimize the SS release immediately after backwashing. Also, the filter bed loaded with $400-450kg/m^2$ SS can almost completely be washed to reduce the head loss to the that of empty bed. The results in this study indicate that the upflow ceramic media filter is an excellent alternative to stormwater treatment, with high SS removal and long lifespan.

A Study on Ventilation System of Underground Low-Intermediate Radioactive Waste Repository (지하 동굴식 중-저준위 방사성 폐기물 처분장의 환기시스템 고찰)

  • Kim, Young-Min;Kwon, O-Sang;Yoon, Chan-Hoon;Kwon, Sang-Ki;Kim, Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.65-78
    • /
    • 2007
  • The pollutants (Rn, CH, CO, HS, radioactive gas from radiolysis) were generated from the process of construction and operation of underground repository, and after disposal of low-intermediate radioactive waste inside there must be controlled by a ventilation system to distribute them in area where enough air is supported. Therefore, a suitable technical approach is needed especially at an underground repository that is equipped with many entry tunnels, storage tunnels, exhaust-blowing tunnels, and vertical shafts in complicated network form. For the technical approach of such a ventilation system, WIPP (Waste Isolation Pilot Plant) in U. S and SFR (Slutforvar for Reaktorafall) low-intermediate radioactive waste repository in Sweden were selected as the models, for calculating the required air quantity, organizing a ventilation network considering cross section, length, surface roughness of the air passage, and describing a calculation of resistance of each circuit. Based on these procedures, a best suited ventilation system was completed with designing proper capacity of fans and operating plan of vertical shafts. As a result of comparing the two repositories based on the geometry dimensions and ventilation facility equipment operation, more parallel circuit as in WIPP, brought decrease in resistance for entire system leading to reduce of operating costs, and the larger cross-sectional area of the SFR, the greater the percentage of disposal capacity. Accordingly, the mixture of parallel circuit of WIPP repository for reducing resistance and SFR repository formation for enlargement of disposal capacity would be the most rational and efficient ventilation system.

  • PDF

A Study on the Planning Criteria for Thalassotherapy Facility (해양치유시설 계획기준에 관한 연구)

  • Lee, Han-Seok;Kang, Young-Hun;Seong, Hai-Min
    • Journal of Navigation and Port Research
    • /
    • v.44 no.1
    • /
    • pp.20-31
    • /
    • 2020
  • The purpose of this study was to provide planning criteria for the thalassotherapy facility. Among the various contents of the planning criteria, the crucial parts of the thalassotherapy facility planning are the location, facility environment, and room space. To do this, we first examined the characteristics of the thalassotherapy facility and inquired about the thalassotherapy resources and treatments that are the basis of the thalassotherapy facility planning. And then, the overseas qualification criteria related to thalassotherapy facility were analyzed. Based on the above research results, the criteria for the thalassotherapy facility planning on location, facility environment, and spaces of rooms are presented. The location is within 1km of the coastline, where there is no pollutant emission facility, and the climate conditions are maintained more than 80% throughout the year below 'caution' level of the thermal sensation index and sensory temperature. The water quality of the facility environment meets the stricter criteria among the domestic standards or ISO 17680 standards, and the air quality is 60% of the atmospheric environment standard of the 「Framework Act on Environmental Policy」 and SO2, NO2, O3 and PM10 concentration shall ensure that the annual number of exceeding standards meets the EU standard, and noise is less than 50dB per daytime, 40dB per night. Therapy spaces have to meet the standards of the 「Building Act」, the working standards of architectural planning and international standards according to their function and use.

Hybrid Water Treatment of Tubular Alumina MF and Polypropylene Beads Coated with Photocatalyst: Effect of Nitrogen Back-flushing Period and Time (관형 알루미나 정밀여과와 광촉매 코팅 폴리프로필렌 구의 혼성 수처리: 질소 역세척 주기와 시간의 영향)

  • Park, Jin Yong;Choi, Min Jee;Ma, Jun Gyu
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.226-236
    • /
    • 2013
  • The effect of $N_2$ back-flushing period (FT) and time (BT) was compared with the previous result used PES (polyethersulfone) beads loaded with titanium dioxide photocatalyst in hybrid process of alumina microfiltration and PP (polypropylene) beads coated with photocatalyst in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). The reason of nitrogen back-washing instead of the general air back-washing method is to minimize the possible effect of oxygen included in air on water quality analysis. As decreasing FT, $R_f$ decreased and J and $V_T$ increased. Treatment efficiency of dissolved organic matters (DOM) was 82.0%, which was the higher than 78.0% of the PES beads result. This means that PP beads coated with photocatalyst was the more effective than PES beads loaded with photo-catalyst in the DOM removal. As increasing BT, the final $R_f$ decreased and the final J increased, but $V_T$ was the maximum at BT 15 sec. The average treatment efficiency of turbidity did not have any trend as changing BT. As BT increasing from 6 sec to 30 sec, the treatment efficiency of DOM increased 11.8%, which was a little higher than the result of PES beads.

A Study on the Measurement of Indoor Air Pollutants in High School Building (교육시설의 공기환경 실측에 관한 연구)

  • Kim, Sun-Jun;Kim, Byoung-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1392-1397
    • /
    • 2008
  • This study is to measure the change of the $CO_2$ and floating dust concentration depending on the volume of the ventilation and the state of on/off the ventilation for the estimation of the air pollution in classroom. The results could be summarized as follows: the test cell was the two full scaled model and the one is set up with ventilation system another was not. the volume of classroom is 170.1m3 and the number of persons are 35. 1)when the ventilation system was not installed, The experimental results of the $CO_2$ concentration showed the average of 2,150ppm and the maximum of 2,740ppm in the classroom. This was the higher than 1,000ppm, the standard value of ASHRAE and the enforcement regulations of School Sanitation Code in Ministry of Education & Human Resources Development, 1000ppm. The $CO_2$ concentration was relatively increasing during school hours. 3)In case of the volume of ventilation of $800m^3$/h, the $CO_2$ concentration of classroom showed the average of 962 ppm and the maximum of 1,380 ppm. This was higher than 1,000ppm, the standard of ASHRAE and the enforcement regulations of School Sanitation Code in Ministry of Education & Human Resources Development. 4)The floating dust(PM10) was the maximum of 0.52 mg/$m^3$, the minimum of 0.25 mg/$m^3$, and the average of 0.32 mg/$m^3$ in case of the ventilation system off. Those were higher than the standard value 0.15 mg/$m^3$. In case of the ventilation system on, the floating dust(PM10) was the maximum of 0.174 mg/$m^3$ , the minimum of 0.048 mg/$m^3$, and the average of 0.078 mg/$m^3$. These were the lower than 0.15 mg/$m^3$, the standard of the enforcement regulations of School Sanitation Code in Ministry of Education & Human Resources Development. 5)The concentrations of $CO_2$ and PM10 were largely depending on the number of students and the ventilation system, The installation of the ventilation system is necessary for the amenity environment and the management of the indoor air quality.

  • PDF

On Preparation and Effects of Composts from Industrial Wastes via High Temperature and Aerobic conditions (유기성 산업폐기물의 고온·호기성 퇴비화 및 비효평가)

  • Kweon, Jin-Wook;Lee, Kyu-Seung;Park, Seung-Heui
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.2
    • /
    • pp.143-150
    • /
    • 1995
  • In order to find a way to utilize paper mill sludge, its composting was conducted with anaerobic waste of kraft paper sludge, raw kraft paper sludge, and CMC sludge(CMC : Sodium Carboxymethylcellulose) under aerobic condition at $50^{\circ}C$. It took 3 days for initial fermentation with anaerobic waste and CMC sludge, and six days with raw kraft paper sludge. Each compost was applied to radish(Rhaphanus Stativus L.), and absorption rate of staple nutrients increased 6.7~9.3 times higher in N, 17~21 times in P and 2~3 times in K than control at the harvesting stage. Also, organic matter contents were increased 1.5~2.3 times 4.5~5.3 times in CEC compared to control soil.

  • PDF

Properties of Harmful Substances Absorption Eco-friendly Artificial Stone Containing Basalt Waste Rock (현무암 폐석을 첨가한 유해물질 흡착 친환경 인조석재의 특성)

  • Pyeon, Su-Jeong;Gwon, Oh-Han;Kim, Tae-Hyun;Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.431-438
    • /
    • 2016
  • Recently, Both rapid economic growth and high-quality native finishing materials demand in buildings such as local infrastructure facilities and cultural facilities have increased along with local quarries. So, increasing local quarries and environmental pollution occurred in quarries get the eyes to damaged area of the surroundings. As an example, carcinogen such as solid formed to fixing asbestos and dust have damaged to local resident. Especially, Radon gas released from asbestos can exist everywhere on earth, released soil and rock as radioactive substances, can be caused lung cancer followed by a smoking. When pollution source to indoor air quality that lacking ventilation rate of the residential building moved in a cycle, human responses such as headache, dizziness, etc. get appear, so on it threatened resident's physical condition. Thus, we need to urgent attention to reduction harmful substance. In the case of radon gas of the pollution source to indoor air quality in housing, it has characteristic that keep on going through half-life released from source, we need to control radon gas source than source removal. We set on vermiculite addition ratio to 10% which has harmful substances adsorption performance, proceed experiment to basalt waste rock addition ratio 50, 60, 70, 80(%). The result of an experiment, based on 'KS F 4035, precast terrazzo', we can be obtainable in the best terrazzo at basalt waste rock addition ratio 70%.

A Study on Removal Efficiency of VOCs using Vortex Cyclones (보텍스 사이클론을 이용한 VOCs 제거효율에 관한 연구)

  • Lim, Gye-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.194-199
    • /
    • 2005
  • The principle of vortex cyclone was applied to enhance the treatment efficiency of waste air streams containing particulate matters, phenol, and others. Adsorption, condensation, and/or coagulation could be induced at low temperature zone formed by Joule-Thomson expansion as the pressurized air and pulverized activated carbon were introduced at the tangential direction into the cyclone system applied with the coaxial funnel tube of vortex cyclone. Easily condensible vapors were adsorbed and/or condensed forcibly on coagulated or condensed materials which were formed as cores for coagulation or condensation by themselves or on pulverized activated carbons. These types of coagulation or condensation rates were rapidly promoted by increase in their diameter. The maximum removal efficiency obtained from this experiment for the removal of carbon dioxide and phenol was about 87.3 and 93.8 percent, respectively. Phenol removal efficiency was increased with the relative humidities and enhanced by pulverized activated carbon added. The Joule-Thomson coefficients were increased with the pressure of air injected in the range of the relative humidities between 10% and 50%. It is believed that the moisture, particulate matters, and the pressure of the process air introduced could control the removal efficiency of VOCs.